4 resultados para Experimental behavior
em DRUM (Digital Repository at the University of Maryland)
Experimental Modeling of Twin-Screw Extrusion Processes to Predict Properties of Extruded Composites
Resumo:
Twin-screw extrusion is used to compound fillers into a polymer matrix in order to improve the properties of the final product. The resultant properties of the composite are determined by the operating conditions used during extrusion processing. Changes in the operating conditions affect the physics of the melt flow, inducing unique composite properties. In the following work, the Residence Stress Distribution methodology has been applied to model both the stress behavior and the property response of a twin-screw compounding process as a function of the operating conditions. The compounding of a pigment into a polymer melt has been investigated to determine the effect of stress on the degree of mixing, which will affect the properties of the composite. In addition, the pharmaceutical properties resulting from the compounding of an active pharmaceutical ingredient are modeled as a function of the operating conditions, indicating the physical behavior inducing the property responses.
Resumo:
State responses to external threats and aggression are studied with focus on two different rationales: (1) to make credible deterrent threats to avoid being exploited, and (2) to minimize the risk of escalation to unwanted war. Given external aggression, the target state's responding behavior has three possibilities: concession (under-response), reciprocation, and escalation. This study focuses on the first two possibilities and investigates how the strategic nature of crisis interaction can explain the intentional choice of concession or avoidance of retaliation. I build a two-level bargaining model that accounts for the domestic bargaining situation between the leader and the challenger for each state. The model's equilibrium shows that the responding behavior is determined not only by inter-state level variables (e.g. balance of power between two states, or cost of war that each state is supposed to pay), but also the domestic variables of both states. Next, the strategic interaction is rationally explained by the model: as the responding state believes that the initiating state has strong domestic challenges and, hence, the aggression is believed to be initiated for domestic political purposes (a rally-around-the-flag effect), the response tends to decrease. The concession is also predicted if the target state leader has strong bargaining power against her domestic challengers \emph{and} she believes that the initiating leader suffers from weak domestic standing. To test the model's prediction, I conduct a lab experiment and case studies. The experimental result shows that under an incentivized bargaining situation, individual actors are observed to react to hostile action as the model predicts: if the opponent is believed to suffer from internally driven difficulties, the subject will not punish hostile behavior of the other player as severely as she would without such a belief. The experiment also provides supporting evidence for the choice of concession: when the player finds herself in a favorable situation while the other has disadvantages, the player is more likely to make concessions in the controlled dictator game. Two cases are examined to discuss how the model can explain the choice of either reciprocation or concession. From personal interviews and fieldwork in South Korea, I find that South Korea's reciprocating behavior during the 2010 Yeonpyeong Island incident is explained by a combination of `low domestic power of initiating leader (Kim Jong-il)' and `low domestic power of responding leader (Lee Myung-bak).' On the other hand, the case of EC-121 is understood as a non-response or concession outcome. Declassified documents show that Nixon and his key advisors interpreted the attack as a result of North Korea's domestic political instabilities (low domestic power of initiating leader) and that Nixon did not have difficulties at domestic politics during the first few months of his presidency (high domestic power of responding leader).
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.
Resumo:
This dissertation focuses on gaining understanding of cell migration and collective behavior through a combination of experiment, analysis, and modeling techniques. Cell migration is a ubiquitous process that plays an important role during embryonic development and wound healing as well as in diseases like cancer, which is a particular focus of this work. As cancer cells become increasingly malignant, they acquire the ability to migrate away from the primary tumor and spread throughout the body to form metastatic tumors. During this process, changes in gene expression and the surrounding tumor environment can lead to changes in cell migration characteristics. In this thesis, I analyze how cells are guided by the texture of their environment and how cells cooperate with their neighbors to move collectively. The emergent properties of collectively moving groups are a particular focus of this work as collective cell dynamics are known to change in diseases such as cancer. The internal machinery for cell migration involves polymerization of the actin cytoskeleton to create protrusions that---in coordination with retraction of the rear of the cell---lead to cell motion. This actin machinery has been previously shown to respond to the topography of the surrounding surface, leading to guided migration of amoeboid cells. Here we show that epithelial cells on nanoscale ridge structures also show changes in the morphology of their cytoskeletons; actin is found to align with the ridge structures. The migration of the cells is also guided preferentially along the ridge length. These ridge structures are on length scales similar to those found in tumor microenvironments and as such provide a system for studying the response of the cells' internal migration machinery to physiologically relevant topographical cues. In addition to sensing surface topography, individual cells can also be influenced by the pushing and pulling of neighboring cells. The emergent properties of collectively migrating cells show interesting dynamics and are relevant for cancer progression, but have been less studied than the motion of individual cells. We use Particle Image Velocimetry (PIV) to extract the motion of a collectively migrating cell sheet from time lapse images. The resulting flow fields allow us to analyze collective behavior over multiple length and time scales. To analyze the connection between individual cell properties and collective migration behavior, we compare experimental flow fields with the migration of simulated cell groups. Our collective migration metrics allow for a quantitative comparison between experimental and simulated results. This comparison shows that tissue-scale decreases in collective behavior can result from changes in individual cell activity without the need to postulate the existence of subpopulations of leader cells or global gradients. In addition to tissue-scale trends in collective behavior, the migration of cell groups includes localized dynamic features such as cell rearrangements. An individual cell may smoothly follow the motion of its neighbors (affine motion) or move in a more individualistic manner (non-affine motion). By decomposing individual motion into both affine and non-affine components, we measure cell rearrangements within a collective sheet. Finally, finite-time Lyapunov exponent (FTLE) values capture the stretching of the flow field and reflect its chaotic character. Applying collective migration analysis techniques to experimental data on both malignant and non-malignant human breast epithelial cells reveals differences in collective behavior that are not found from analyzing migration speeds alone. Non-malignant cells show increased cooperative motion on long time scales whereas malignant cells remain uncooperative as time progresses. Combining multiple analysis techniques also shows that these two cell types differ in their response to a perturbation of cell-cell adhesion through the molecule E-cadherin. Non-malignant MCF10A cells use E-cadherin for short time coordination of collective motion, yet even with decreased E-cadherin expression, the cells remain coordinated over long time scales. In contrast, the migration behavior of malignant and invasive MCF10CA1a cells, which already shows decreased collective dynamics on both time scales, is insensitive to the change in E-cadherin expression.