3 resultados para Environmental testing
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Widespread adoption of lead-free materials and processing for printed circuit board (PCB) assembly has raised reliability concerns regarding surface insulation resistance (SIR) degradation and electrochemical migration (ECM). As PCB conductor spacings decrease, electronic products become more susceptible to these failures mechanisms, especially in the presence of surface contamination and flux residues which might remain after no-clean processing. Moreover, the probability of failure due to SIR degradation and ECM is affected by the interaction between physical factors (such as temperature, relative humidity, electric field) and chemical factors (such as solder alloy, substrate material, no-clean processing). Current industry standards for assessing SIR reliability are designed to serve as short-term qualification tests, typically lasting 72 to 168 hours, and do not provide a prediction of reliability in long-term applications. The risk of electrochemical migration with lead-free assemblies has not been adequately investigated. Furthermore, the mechanism of electrochemical migration is not completely understood. For example, the role of path formation has not been discussed in previous studies. Another issue is that there are very few studies on development of rapid assessment methodologies for characterizing materials such as solder flux with respect to their potential for promoting ECM. In this dissertation, the following research accomplishments are described: 1). Long-term temp-humidity-bias (THB) testing over 8,000 hours assessing the reliability of printed circuit boards processed with a variety of lead-free solder pastes, solder pad finishes, and substrates. 2). Identification of silver migration from Sn3.5Ag and Sn3.0Ag0.5Cu lead-free solder, which is a completely new finding compared with previous research. 3). Established the role of path formation as a step in the ECM process, and provided clarification of the sequence of individual steps in the mechanism of ECM: path formation, electrodeposition, ion transport, electrodeposition, and filament formation. 4). Developed appropriate accelerated testing conditions for assessing the no-clean processed PCBs' susceptibility to ECM: a). Conductor spacings in test structures should be reduced in order to reflect the trend of higher density electronics and the effect of path formation, independent of electric field, on the time-to-failure. b). THB testing temperatures should be modified according to the material present on the PCB, since testing at 85oC can cause the evaporation of weak organic acids (WOAs) in the flux residues, leading one to underestimate the risk of ECM. 5). Correlated temp-humidity-bias testing with ion chromatography analysis and potentiostat measurement to develop an efficient and effective assessment methodology to characterize the effect of no-clean processing on ECM.
Resumo:
With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.
Resumo:
Human immunodeficiency virus (HIV) is a condition in which immune cells become destroyed such that the body may become unable to fight off infections. Engaging in risk-taking behaviors (e.g., substance use) puts people at heightened risk for HIV infection, with mid-to-late adolescents at increasing risk (Leigh & Stall, 1993). Environmental and neurological reasons have been suggested for increased risk-taking among adolescents. First, family-level precursors such as parent-adolescent conflict have been significantly associated with and may pose risk for engaging in substance use and risk-taking (Duncan, Duncan, Biglan, & Ary, 1998). Thus, parent-adolescent conflict may be an important proximal influence on HIV risk behaviors (Lester et al., 2010; Rowe, Wang, Greenbaum, & Liddle, 2008). Yet, the temporal relation between parent-adolescent conflict and adolescent HIV risk-taking behaviors is still unknown. Second, at-risk adolescents may carry a neurobiological predisposition for engaging in trait-like expressions of disinhibited behavior and other risk-taking behaviors (Iacono, Malone, & McGue, 2008). When exposed to interpersonally stressful situations, their likelihood of engagement in HIV risk behaviors may increase. To investigate the role of parent-adolescent conflict in adolescent HIV risk-taking behaviors, 49 adolescents ages 14-17 and their parent were randomly assigned to complete a standardized discussion task to discuss a control topic or a conflict topic. Immediately after the discussion, adolescents completed a laboratory risk-taking measure. In a follow-up visit, eligible adolescents underwent electrophysiological (EEG) recording while completing a task designed to assess the presence of a neurobiological marker for behavioral disinhibition which I hypothesized would moderate the links between conflict and risk-taking. First, findings indicated that during the discussion task, adolescents in the conflict condition evidenced a significantly greater psychophysiological stress response relative to adolescents in the control condition. Second, a neurobiological marker of behavioral disinhibition moderated the relation between discussion condition and adolescent risk-taking, such that adolescents evidencing relatively high levels of a neurobiological marker related to sensation-seeking evidenced greater levels of risk-taking following the conflict condition, relative to the control condition. Lastly, I observed no significant relation between parent-adolescent conflict, the neurobiological marker of behavioral disinhibition and adolescent engagement in real-world risk-taking behavior.