3 resultados para Environmental accounting methods

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steel slag is a byproduct of iron and steel production by the metallurgical industries. Annually, 21 million tons of steel slag is produced in the United States. Most of the slag is landfilled, which represents a significant economic loss and a waste of valuable land space. Steel slag has great potential for the construction of highway embankments; however, its use has been limited due to its high swelling potential and alkalinity. The swelling potential of steel slags may lead to deterioration of the structural stability of highways, and high alkalinity poses an environmental challenge as it affects the leaching behavior of trace metals. This study seeks a methodology that promotes the use of steel slag in highway embankments by minimizing these two main disadvantages. Accelerated swelling tests were conducted to evaluate the swelling behavior of pure steel slag and water treatment residual (WTR) treated steel slag, where WTR is an alum-rich by-product of drinking water treatment plants. Sequential batch tests and column leach tests, as well as two different numerical analyses, UMDSurf and WiscLEACH, were carried out to check the environmental suitability of the methods. Tests were conducted to study the effect of a common borrow fill material that encapsulated the slag in the embankment and the effects of two subgrade soils on the chemical properties of slag leachate. The results indicated that an increase in WTR content in the steel slag-WTR mixtures yields a decrease in pH and most of the leached metal concentrations, except aluminum. The change in the levels of pH, after passing through encapsulation and subgrade, depends on the natural pHs of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research concerns the conceptual and empirical relationship between environmental justice and social-ecological resilience as it relates to climate change vulnerability and adaptation. Two primary questions guided this work. First, what is the level of resilience and adaptive capacity for social-ecological systems that are characterized by environmental injustice in the face of climate change? And second, what is the role of an environmental justice approach in developing adaptation policies that will promote social-ecological resilience? These questions were investigated in three African American communities that are particularly vulnerable to flooding from sea-level rise on the Eastern Shore of the Chesapeake Bay. Using qualitative and quantitative methods, I found that in all three communities, religious faith and the church, rootedness in the landscape, and race relations were highly salient to community experience. The degree to which these common aspects of the communities have imparted adaptive capacity has changed over time. Importantly, a given social-ecological factor does not have the same effect on vulnerability in all communities; however, in all communities political isolation decreases adaptive capacity and increases vulnerability. This political isolation is at least partly due to procedural injustice, which occurs for a number of interrelated reasons. This research further revealed that while all stakeholders (policymakers, environmentalists, and African American community members) generally agree that justice needs to be increased on the Eastern Shore, stakeholder groups disagree about what a justice approach to adaptation would look like. When brought together at a workshop, however, these stakeholders were able to identify numerous challenges and opportunities for increasing justice. Resilience was assessed by the presence of four resilience factors: living with uncertainty, nurturing diversity, combining different types of knowledge, and creating opportunities for self-organization. Overall, these communities seem to have low resilience; however, there is potential for resilience to increase. Finally, I argue that the use of resilience theory for environmental justice communities is limited by the great breadth and depth of knowledge required to evaluate the state of the social-ecological system, the complexities of simultaneously promoting resilience at both the regional and local scale, and the lack of attention to issues of justice.