2 resultados para Enteric parasites
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.
Resumo:
Avian malaria and related haematozoa are nearly ubiquitous parasites that can impose fitness costs of variable severity and may, in some cases, cause substantial mortality in their host populations. One example of the latter, the emergence of avian malaria in the endemic avifauna of Hawaii, has become a model for understanding the consequences of human-mediated disease introduction. The drastic declines of native Hawaiian birds due to avian malaria provided the impetus for examining more closely several aspects of host-parasite interactions in this system. Host-specificity is an important character determining the extent to which a parasite may emerge. Traditional parasite classification, however, has used host information as a character in taxonomical identification, potentially obscuring the true host range of many parasites. To improve upon previous methods, I first developed molecular tools to identify parasites infecting a particular host. I then used these molecular techniques to characterize host-specificity of parasites in the genera Plasmodium and Haemoproteus. I show that parasites in the genus Plasmodium exhibit low specificity and are therefore most likely to emerge in new hosts in the future. Subsequently, I characterized the global distribution of the single lineage of P. relictum that has emerged in Hawaii. I demonstrate that this parasite has a broad host distribution worldwide, that it is likely of Old World origin and that it has been introduced to numerous islands around the world, where it may have been overlooked as a cause of decline in native birds. I also demonstrate that morphological classification of P. relictum does not capture differences among groups of parasites that appear to be reproductively isolated based on molecular evidence. Finally, I examined whether reduced immunological capacity, which has been proposed to explain the susceptibility of Hawaiian endemics, is a general feature of an "island syndrome" in isolated avifauna of the remote Pacific. I show that, over multiple time scales, changes in immune response are not uniform and that observed changes probably reflect differences in genetic diversity, parasite exposure and life history that are unique to each species.