2 resultados para Energy Technology Engineering Center (U.S.)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This study examines the factors facilitating the transfer admission of students broadly classified as Black from a single community college into a selective engineering college. The work aims to further research on STEM preparation and performance for students of color, as well as scholarship on increasing access to four-year institutions from two-year schools. Factors illuminating Underrepresented Racial and Ethnic Minority (URM) student pathways through Science, Technology, Engineering, and Mathematics (STEM) degree programs have often been examined through large-scale quantitative studies. However, this qualitative study complements quantitative data through demographic questionnaires, as well as semi-structured individual and group. The backgrounds and voices of diverse Black transfer students in four-year engineering degree programs were captured through these methods. Major findings from this research include evidence that community college faculty, peer networks, and family members facilitated transfer. Other results distinguish Black African from Black American transfers; included in these distinctions are depictions of different K-12 schooling experiences and differences in how participants self-identified. The findings that result from this research build upon the few studies that account for expanded dimensions of student diversity within the Black population. Among other demographic data, participants’ countries of birth and years of migration to the U.S. (if applicable) are included. Interviews reveal participants’ perceptions of factors impacting their educational trajectories in STEM and subsequent ability to transfer into a competitive undergraduate engineering program. This study is inclusive of, and reveals an important shifting demographic within the United States of America, Black Africans, who represent one of the fastest-growing segments of the immigrant population.
Resumo:
Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.