5 resultados para End-to-side neurorrhaphy
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This study, "Civil Rights on the Cell Block: Race, Reform, and Violence in Texas Prisons and the Nation, 1945-1990," offers a new perspective on the historical origins of the modern prison industrial complex, sexual violence in working-class culture, and the ways in which race shaped the prison experience. This study joins new scholarship that reperiodizes the Civil Rights era while also considering how violence and radicalism shaped the civil rights struggle. It places the criminal justice system at the heart of both an older racial order and within a prison-made civil rights movement that confronted the prison's power to deny citizenship and enforce racial hierarchies. By charting the trajectory of the civil rights movement in Texas prisons, my dissertation demonstrates how the internal struggle over rehabilitation and punishment shaped civil rights, racial formation, and the political contest between liberalism and conservatism. This dissertation offers a close case study of Texas, where the state prison system emerged as a national model for penal management. The dissertation begins with a hopeful story of reform marked by an apparently successful effort by the State of Texas to replace its notorious 1940s plantation/prison farm system with an efficient, business-oriented agricultural enterprise system. When this new system was fully operational in the 1960s, Texas garnered plaudits as a pioneering, modern, efficient, and business oriented Sun Belt state. But this reputation of competence and efficiency obfuscated the reality of a brutal system of internal prison management in which inmates acted as guards, employing coercive means to maintain control over the prisoner population. The inmates whom the prison system placed in charge also ran an internal prison economy in which money, food, human beings, reputations, favors, and sex all became commodities to be bought and sold. I analyze both how the Texas prison system managed to maintain its high external reputation for so long in the face of the internal reality and how that reputation collapsed when inmates, inspired by the Civil Rights Movement, revolted. My dissertation shows that this inmate Civil Rights rebellion was a success in forcing an end to the existing system but a failure in its attempts to make conditions in Texas prisons more humane. The new Texas prison regime, I conclude, utilized paramilitary practices, privatized prisons, and gang-related warfare to establish a new system that focused much more on law and order in the prisons than on the legal and human rights of prisoners. Placing the inmates and their struggle at the heart of the national debate over rights and "law and order" politics reveals an inter-racial social justice movement that asked the courts to reconsider how the state punished those who committed a crime while also reminding the public of the inmates' humanity and their constitutional rights.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
While news stories are an important traditional medium to broadcast and consume news, microblogging has recently emerged as a place where people can dis- cuss, disseminate, collect or report information about news. However, the massive information in the microblogosphere makes it hard for readers to keep up with these real-time updates. This is especially a problem when it comes to breaking news, where people are more eager to know “what is happening”. Therefore, this dis- sertation is intended as an exploratory effort to investigate computational methods to augment human effort when monitoring the development of breaking news on a given topic from a microblog stream by extractively summarizing the updates in a timely manner. More specifically, given an interest in a topic, either entered as a query or presented as an initial news report, a microblog temporal summarization system is proposed to filter microblog posts from a stream with three primary concerns: topical relevance, novelty, and salience. Considering the relatively high arrival rate of microblog streams, a cascade framework consisting of three stages is proposed to progressively reduce quantity of posts. For each step in the cascade, this dissertation studies methods that improve over current baselines. In the relevance filtering stage, query and document expansion techniques are applied to mitigate sparsity and vocabulary mismatch issues. The use of word embedding as a basis for filtering is also explored, using unsupervised and supervised modeling to characterize lexical and semantic similarity. In the novelty filtering stage, several statistical ways of characterizing novelty are investigated and ensemble learning techniques are used to integrate results from these diverse techniques. These results are compared with a baseline clustering approach using both standard and delay-discounted measures. In the salience filtering stage, because of the real-time prediction requirement a method of learning verb phrase usage from past relevant news reports is used in conjunction with some standard measures for characterizing writing quality. Following a Cranfield-like evaluation paradigm, this dissertation includes a se- ries of experiments to evaluate the proposed methods for each step, and for the end- to-end system. New microblog novelty and salience judgments are created, building on existing relevance judgments from the TREC Microblog track. The results point to future research directions at the intersection of social media, computational jour- nalism, information retrieval, automatic summarization, and machine learning.
Resumo:
With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.