4 resultados para Emergency Communication Costs.
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.
Resumo:
Heterogeneous computing systems have become common in modern processor architectures. These systems, such as those released by AMD, Intel, and Nvidia, include both CPU and GPU cores on a single die available with reduced communication overhead compared to their discrete predecessors. Currently, discrete CPU/GPU systems are limited, requiring larger, regular, highly-parallel workloads to overcome the communication costs of the system. Without the traditional communication delay assumed between GPUs and CPUs, we believe non-traditional workloads could be targeted for GPU execution. Specifically, this thesis focuses on the execution model of nested parallel workloads on heterogeneous systems. We have designed a simulation flow which utilizes widely used CPU and GPU simulators to model heterogeneous computing architectures. We then applied this simulator to non-traditional GPU workloads using different execution models. We also have proposed a new execution model for nested parallelism allowing users to exploit these heterogeneous systems to reduce execution time.
Resumo:
Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matrix often plays the role of a sufficient statistic in many signal and information processing tasks. However, owing to the large dimension of the data, it may become necessary to obtain a compressed sketch of the high dimensional covariance matrix to reduce the associated storage and communication costs. Nested sampling has been proposed in the past as an efficient sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorrelation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled at the Nyquist rate. The key idea behind nested sampling is to exploit properties of the difference set that naturally arises in quadratic measurement model associated with covariance compression. In this thesis, we will focus on developing novel versions of nested sampling for low rank Toeplitz covariance estimation, and phase retrieval, where the latter problem finds many applications in high resolution optical imaging, X-ray crystallography and molecular imaging. The problem of low rank compressive Toeplitz covariance estimation is first shown to be fundamentally related to that of line spectrum recovery. In absence if noise, this connection can be exploited to develop a particular kind of sampler called the Generalized Nested Sampler (GNS), that can achieve optimal compression rates. In presence of bounded noise, we develop a regularization-free algorithm that provably leads to stable recovery of the high dimensional Toeplitz matrix from its order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm and nuclear norm based reconstruction algorithms, our technique does not use any tuning parameters, which can be of great practical value. The idea of nested sampling idea also finds a surprising use in the problem of phase retrieval, which has been of great interest in recent times for its convex formulation via PhaseLift, By using another modified version of nested sampling, namely the Partial Nested Fourier Sampler (PNFS), we show that with probability one, it is possible to achieve a certain conjectured lower bound on the necessary measurement size. Moreover, for sparse data, an l1 minimization based algorithm is proposed that can lead to stable phase retrieval using order-wise minimal number of measurements.
The tithe: Public research university STEM faculty perspectives on sponsored research indirect costs
Resumo:
This study sought to understand the phenomenon of faculty involvement in indirect cost under-recovery. The focus of the study was on public research university STEM (science, technology, engineering and mathematics) faculty, and their perspectives on, and behavior towards, a higher education fiscal policy. The explanatory scheme was derived from anthropological theory, and incorporated organizational culture, faculty socialization, and political bargaining models in the conceptual framework. This study drew on two key assumptions. The first assumption was that faculty understanding of, and behavior toward, indirect cost recovery represents values, beliefs, and choices drawn from the distinct professional socialization and distinct culture of faculty. The second assumption was that when faculty and institutional administrators are in conflict over indirect cost recovery, the resultant formal administrative decision comes about through political bargaining over critical resources. The research design was a single site, qualitative case study with a focus on learning the meaning of the phenomenon as understood by the informants. In this study the informants were tenured and tenure track research university faculty in the STEM fields who were highly successful at obtaining Federal sponsored research funds, with individual sponsored research portfolios of at least one million dollars. The data consisted of 11 informant interviews, bolstered by documentary evidence. The findings indicated that faculty socialization and organizational culture were the most dominant themes, while political bargaining emerged as significantly less prominent. Public research university STEM faculty are most concerned about the survival of their research programs and the discovery facilitated by their research programs. They resort to conjecture when confronted by the issue of indirect cost recovery. The findings direct institutional administrators to consider less emphasis on compliance and hierarchy when working with expert professionals such as science faculty. Instead a more effective focus might be on communication and clarity in budget processes and organizational decision-making, and a concentration on critical administrative support that can relieve faculty administrative burdens. For higher education researchers, the findings suggest that we need to create more sophisticated models to help us understand organizations dependent on expert professionals.