3 resultados para Embodied embedded cognition
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Water scarcity is a global issue that has already affected every continent. Membrane technology is considered as one of the most promising candidates for resolving this worsening issue. Among all the membrane processes, the emerging forward osmosis (FO) membrane process is osmotically-driven and has unique advantages compared with other traditional pressure-driven membrane processes. One of the major challenges to advancing the FO membrane process is the lack of a suitable membrane. Polyelectrolyte thin film prepared via layer-by-layer (LbL) technique has demonstrated its excellent performance in many applications including electronics, optics, sensors, etc. Recent studies have revealed the potential of polyelectrolyte thin films in acting as the active separation layer of FO membranes, but significant efforts are still needed to improve the membrane performance and understand the transport mechanisms. This dissertation introduces a novel approach to prepare a zeolite-embedded polyelectrolyte composite membrane for enhanced FO performance. This membrane takes advantages of the versatile LbL process to unprecedentedly incorporate high loading of zeolite nanoparticles, which are anticipated to facilitate water transport due to the uniquely interconnected structure of zeolites. Major topics discussed in this dissertation include: (1) the synthesis and evaluation of the polyelectrolyte-zeolite composite FO membrane, (2) the examination of the fouling resistance to identify its technical limitations, (3) the demonstration of the membrane regenerability as an effective strategy for membrane fouling control, and (4) the investigation of crosslinking effects on the membrane performance to elucidate the transport mechanisms involved in the zeolite-embedded polyelectrolyte membranes. Comparative studies have been made between polyelectrolyte membranes with and without zeolite incorporation. The findings suggest that the zeolite-embedded membrane, although slightly more susceptible to silica scaling, has demonstrated enhanced water flux and separation capability, good resistance to organic fouling, and complete regenerability for fouling control. Additionally, the embedded zeolite nanoparticles are proved to be able to create fast pathways for water transport. Overall, this work provides a novel strategy to create zeolite-polymer composite membranes with enhanced separation performance and unique fouling mitigation properties.
Resumo:
Children develop in a sea of reciprocal social interaction, but their brain development is predominately studied in non-interactive contexts (e.g., viewing photographs of faces). This dissertation investigated how the developing brain supports social interaction. Specifically, novel paradigms were used to target two facets of social experience—social communication and social motivation—across three studies in children and adults. In Study 1, adults listened to short vignettes—which contained no social information—that they believed to be either prerecorded or presented over an audio-feed by a live social partner. Simply believing that speech was from a live social partner increased activation in the brain’s mentalizing network—a network involved in thinking about others’ thoughts. Study 2 extended this paradigm to middle childhood, a time of increasing social competence and social network complexity, as well as structural and functional social brain development. Results showed that, as in adults, regions of the mentalizing network were engaged by live speech. Taken together, these findings indicate that the mentalizing network may support the processing of interactive communicative cues across development. Given this established importance of social-interactive context, Study 3 examined children’s social motivation when they believed they were engaged in a computer-based chat with a peer. Children initiated interaction via sharing information about their likes and hobbies and received responses from the peer. Compared to a non-social control, in which children chatted with a computer, peer interaction increased activation in mentalizing regions and reward circuitry. Further, within mentalizing regions, responsivity to the peer increased with age. Thus, across all three studies, social cognitive regions associated with mentalizing supported real-time social interaction. In contrast, the specific social context appeared to influence both reward circuitry involvement and age-related changes in neural activity. Future studies should continue to examine how the brain supports interaction across varied real-world social contexts. In addition to illuminating typical development, understanding the neural bases of interaction will offer insight into social disabilities such as autism, where social difficulties are often most acute in interactive situations. Ultimately, to best capture human experience, social neuroscience ought to be embedded in the social world.
Resumo:
Socioeconomic status (SES) influences language and cognitive development, with discrepancies particularly noticeable in vocabulary development. This study examines how SES-related differences impact the development of syntactic processing, cognitive inhibition, and word learning. 38 4-5-year-olds from higher- and lower-SES backgrounds completed a word-learning task, in which novel words were embedded in active and passive sentences. Critically, unlike the active sentences, all passive sentences required a syntactic revision. Measures of cognitive inhibition were obtained through a modified Stroop task. Results indicate that lower-SES participants had more difficulty using inhibitory functions to resolve conflict compared to their higher-SES counterparts. However, SES did not impact language processing, as the language outcomes were similar across SES background. Additionally, stronger inhibitory processes were related to better language outcomes in the passive sentence condition. These results suggest that cognitive inhibition impact language processing, but this function may vary across children from different SES backgrounds