2 resultados para Efficient Market Hypothesis

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human and robots have complementary strengths in performing assembly operations. Humans are very good at perception tasks in unstructured environments. They are able to recognize and locate a part from a box of miscellaneous parts. They are also very good at complex manipulation in tight spaces. The sensory characteristics of the humans, motor abilities, knowledge and skills give the humans the ability to react to unexpected situations and resolve problems quickly. In contrast, robots are very good at pick and place operations and highly repeatable in placement tasks. Robots can perform tasks at high speeds and still maintain precision in their operations. Robots can also operate for long periods of times. Robots are also very good at applying high forces and torques. Typically, robots are used in mass production. Small batch and custom production operations predominantly use manual labor. The high labor cost is making it difficult for small and medium manufacturers to remain cost competitive in high wage markets. These manufactures are mainly involved in small batch and custom production. They need to find a way to reduce the labor cost in assembly operations. Purely robotic cells will not be able to provide them the necessary flexibility. Creating hybrid cells where humans and robots can collaborate in close physical proximities is a potential solution. The underlying idea behind such cells is to decompose assembly operations into tasks such that humans and robots can collaborate by performing sub-tasks that are suitable for them. Realizing hybrid cells that enable effective human and robot collaboration is challenging. This dissertation addresses the following three computational issues involved in developing and utilizing hybrid assembly cells: - We should be able to automatically generate plans to operate hybrid assembly cells to ensure efficient cell operation. This requires generating feasible assembly sequences and instructions for robots and human operators, respectively. Automated planning poses the following two challenges. First, generating operation plans for complex assemblies is challenging. The complexity can come due to the combinatorial explosion caused by the size of the assembly or the complex paths needed to perform the assembly. Second, generating feasible plans requires accounting for robot and human motion constraints. The first objective of the dissertation is to develop the underlying computational foundations for automatically generating plans for the operation of hybrid cells. It addresses both assembly complexity and motion constraints issues. - The collaboration between humans and robots in the assembly cell will only be practical if human safety can be ensured during the assembly tasks that require collaboration between humans and robots. The second objective of the dissertation is to evaluate different options for real-time monitoring of the state of human operator with respect to the robot and develop strategies for taking appropriate measures to ensure human safety when the planned move by the robot may compromise the safety of the human operator. In order to be competitive in the market, the developed solution will have to include considerations about cost without significantly compromising quality. - In the envisioned hybrid cell, we will be relying on human operators to bring the part into the cell. If the human operator makes an error in selecting the part or fails to place it correctly, the robot will be unable to correctly perform the task assigned to it. If the error goes undetected, it can lead to a defective product and inefficiencies in the cell operation. The reason for human error can be either confusion due to poor quality instructions or human operator not paying adequate attention to the instructions. In order to ensure smooth and error-free operation of the cell, we will need to monitor the state of the assembly operations in the cell. The third objective of the dissertation is to identify and track parts in the cell and automatically generate instructions for taking corrective actions if a human operator deviates from the selected plan. Potential corrective actions may involve re-planning if it is possible to continue assembly from the current state. Corrective actions may also involve issuing warning and generating instructions to undo the current task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, I study three problems in market design: the allocation of resources to schools using deferred acceptance algorithms, the demand reduction of employees on centralized labor markets, and the alleviation of traffic congestion. I show how institutional and behavioral considerations specific to each problem can alleviate several practical limitations faced by current solutions. For the case of traffic congestion, I show experimentally that the proposed solution is effective. In Chapter 1, I investigate how school districts could assign resources to schools when it is desirable to provide stable assignments. An assignment is stable if there is no student currently assigned to a school that would prefer to be assigned to a different school that would admit him if it had the resources. Current assignment algorithms assume resources are fixed. I show how simple modifications to these algorithms produce stable allocations of resources and students to schools. In Chapter 2, I show how the negotiation of salaries within centralized labor markets using deferred acceptance algorithms eliminates the incentives of the hiring firms to strategically reduce their demand. It is well-known that it is impossible to eliminate these incentives for the hiring firms in markets without negotiation of salaries. Chapter 3 investigates how to achieve an efficient distribution of traffic congestion on a road network. Traffic congestion is the product of an externality: drivers do not consider the cost they impose on other drivers by entering a road. In theory, Pigouvian prices would solve the problem. In practice, however, these prices face two important limitations: i) the information required to calculate these prices is unavailable to policy makers and ii) these prices would effectively be new taxes that would transfer resources from the public to the government. I show how to construct congestion prices that retrieve the required information from the drivers and do not transfer resources to the government. I circumvent the limitations of Pigouvian prices by assuming that individuals make some mistakes when selecting routes and have a tendency towards truth-telling. Both assumptions are very robust observations in experimental economics.