5 resultados para Eclipse modeling framework (EMF)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Although tyrosine kinase inhibitors (TKIs) such as imatinib have transformed chronic myelogenous leukemia (CML) into a chronic condition, these therapies are not curative in the majority of cases. Most patients must continue TKI therapy indefinitely, a requirement that is both expensive and that compromises a patient's quality of life. While TKIs are known to reduce leukemic cells' proliferative capacity and to induce apoptosis, their effects on leukemic stem cells, the immune system, and the microenvironment are not fully understood. A more complete understanding of their global therapeutic effects would help us to identify any limitations of TKI monotherapy and to address these issues through novel combination therapies. Mathematical models are a complementary tool to experimental and clinical data that can provide valuable insights into the underlying mechanisms of TKI therapy. Previous modeling efforts have focused on CML patients who show biphasic and triphasic exponential declines in BCR-ABL ratio during therapy. However, our patient data indicates that many patients treated with TKIs show fluctuations in BCR-ABL ratio yet are able to achieve durable remissions. To investigate these fluctuations, we construct a mathematical model that integrates CML with a patient's autologous immune response to the disease. In our model, we define an immune window, which is an intermediate range of leukemic concentrations that lead to an effective immune response against CML. While small leukemic concentrations provide insufficient stimulus, large leukemic concentrations actively suppress a patient's immune system, thus limiting it's ability to respond. Our patient data and modeling results suggest that at diagnosis, a patient's high leukemic concentration is able to suppress their immune system. TKI therapy drives the leukemic population into the immune window, allowing the patient's immune cells to expand and eventually mount an efficient response against the residual CML. This response drives the leukemic population below the immune window, causing the immune population to contract and allowing the leukemia to partially recover. The leukemia eventually reenters the immune window, thus stimulating a sequence of weaker immune responses as the two populations approach equilibrium. We hypothesize that a patient's autologous immune response to CML may explain the fluctuations in BCR-ABL ratio that are regularly seen during TKI therapy. These fluctuations may serve as a signature of a patient's individual immune response to CML. By applying our modeling framework to patient data, we are able to construct an immune profile that can then be used to propose patient-specific combination therapies aimed at further reducing a patient's leukemic burden. Our characterization of a patient's anti-leukemia immune response may be especially valuable in the study of drug resistance, treatment cessation, and combination therapy.
Resumo:
Background: Over the last few decades, the prevalence of young adults with disabilities (YAD) has steadily risen as a result of advances in medicine, clinical treatment, and biomedical technologythat enhanced their survival into adulthood. Despite investments in services, family supports, and insurance, they experience poor health status and barriers to successful transition into adulthood. Objectives: We investigated the collective roles of multi-faceted factors at intrapersonal, interpersonal and community levels within the social ecological framework on health related outcome including self-rated health (SRH) of YAD. The three specific aims are: 1) to examine sociodemographic differences and health insurance coverage in adolescence; 2) to investigate the role of social skills in relationships with family and peers developed in adolescence; and 3) to collectively explore the association of sociodemographic characteristics, social skills, and community participation in adolescence on SRH. Methods: Using longitudinal data (N=5,020) from the National Longitudinal Transition Study (NLTS2), we conducted multivariate logistic regression analyses to understand the association between insurance status as well as social skills in adolescence and YAD’s health related outcomes. Structural equation modeling (SEM) assessed the confluence of multi-faceted factors from the social ecological model that link to health in early adulthood. Results: Compared with YAD who had private insurance, YAD who had public health insurance in adolescence are at higher odds of experiencing poorer health related outcomes in self-rated health [adjusted odds ratio (aOR=2.89, 95% confidence interval (CI): 1.16, 7.23), problems with health (aOR=2.60, 95%CI: 1.26, 5.35), and missing social activities due to health problems (aOR=2.86, 95%CI: 1.39, 5.85). At the interpersonal level, overall social skills developed through relationship with family and peers in adolescence do not appear to have association with health related outcomes in early adulthood. Finally, at the community level, community participation in adolescence does not have an association with SRH in early adulthood. Conclusions: Having public health insurance coverage does not equate to good health. YAD need additional supports to achieve positive health outcomes. The findings in social skills and community participation suggest other potential factors may be at play for health related outcomes for YAD and the need for further investigation.
Resumo:
Symbolic execution is a powerful program analysis technique, but it is very challenging to apply to programs built using event-driven frameworks, such as Android. The main reason is that the framework code itself is too complex to symbolically execute. The standard solution is to manually create a framework model that is simpler and more amenable to symbolic execution. However, developing and maintaining such a model by hand is difficult and error-prone. We claim that we can leverage program synthesis to introduce a high-degree of automation to the process of framework modeling. To support this thesis, we present three pieces of work. First, we introduced SymDroid, a symbolic executor for Android. While Android apps are written in Java, they are compiled to Dalvik bytecode format. Instead of analyzing an app’s Java source, which may not be available, or decompiling from Dalvik back to Java, which requires significant engineering effort and introduces yet another source of potential bugs in an analysis, SymDroid works directly on Dalvik bytecode. Second, we introduced Pasket, a new system that takes a first step toward automatically generating Java framework models to support symbolic execution. Pasket takes as input the framework API and tutorial programs that exercise the framework. From these artifacts and Pasket's internal knowledge of design patterns, Pasket synthesizes an executable framework model by instantiating design patterns, such that the behavior of a synthesized model on the tutorial programs matches that of the original framework. Lastly, in order to scale program synthesis to framework models, we devised adaptive concretization, a novel program synthesis algorithm that combines the best of the two major synthesis strategies: symbolic search, i.e., using SAT or SMT solvers, and explicit search, e.g., stochastic enumeration of possible solutions. Adaptive concretization parallelizes multiple sub-synthesis problems by partially concretizing highly influential unknowns in the original synthesis problem. Thanks to adaptive concretization, Pasket can generate a large-scale model, e.g., thousands lines of code. In addition, we have used an Android model synthesized by Pasket and found that the model is sufficient to allow SymDroid to execute a range of apps.
Resumo:
The production of artistic prints in the sixteenth- and seventeenth-century Netherlands was an inherently social process. Turning out prints at any reasonable scale depended on the fluid coordination between designers, platecutters, and publishers; roles that, by the sixteenth century, were considered distinguished enough to merit distinct credits engraved on the plates themselves: invenit, fecit/sculpsit, and excudit. While any one designer, plate cutter, and publisher could potentially exercise a great deal of influence over the production of a single print, their individual decisions (Whom to select as an engraver? What subjects to create for a print design? What market to sell to?) would have been variously constrained or encouraged by their position in this larger network (Who do they already know? And who, in turn, do their contacts know?) This dissertation addresses the impact of these constraints and affordances through the novel application of computational social network analysis to major databases of surviving prints from this period. This approach is used to evaluate several questions about trends in early modern print production practices that have not been satisfactorily addressed by traditional literature based on case studies alone: Did the social capital demanded by print production result in centralized, or distributed production of prints? When, and to what extent, did printmakers and publishers in the Low countries favor international versus domestic collaborators? And were printmakers under the same pressure as painters to specialize in particular artistic genres? This dissertation ultimately suggests how simple professional incentives endemic to the practice of printmaking may, at large scales, have resulted in quite complex patterns of collaboration and production. The framework of network analysis surfaces the role of certain printmakers who tend to be neglected in aesthetically-focused histories of art. This approach also highlights important issues concerning art historians’ balancing of individual influence versus the impact of longue durée trends. Finally, this dissertation also raises questions about the current limitations and future possibilities of combining computational methods with cultural heritage datasets in the pursuit of historical research.
Resumo:
The goal of this study is to provide a framework for future researchers to understand and use the FARSITE wildfire-forecasting model with data assimilation. Current wildfire models lack the ability to provide accurate prediction of fire front position faster than real-time. When FARSITE is coupled with a recursive ensemble filter, the data assimilation forecast method improves. The scope includes an explanation of the standalone FARSITE application, technical details on FARSITE integration with a parallel program coupler called OpenPALM, and a model demonstration of the FARSITE-Ensemble Kalman Filter software using the FireFlux I experiment by Craig Clements. The results show that the fire front forecast is improved with the proposed data-driven methodology than with the standalone FARSITE model.