2 resultados para ENSO
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Teleconnections refer to the climate variability links between non-contiguous geographic regions, and tend to be associated with variability in both space and time of the climate’s semi-permanent circulation features. Teleconnections are well-developed in Northern winter, when they influence subseasonal-to-seasonal climate variability, notably, in surface temperature and precipitation. This work is comprised of four independent studies that improve understanding of tropical-extratropical teleconnections and their surface climate responses, subseasonal teleconnection evolution, and the utility of teleconnections in attribution of extreme climate events. After an introduction to teleconnection analysis as well as the major teleconnection patterns and associated climatic footprints manifest during Northern winter, the lagged impact of the Madden-Julian Oscillation (MJO) on subseasonal climate variability is presented. It is found that monitoring of MJO-related velocity potential anomalies is sufficient to predict MJO impacts. These impacts include, for example, the development of significant positive temperature anomalies over the eastern United States one to three weeks following an anomalous convective dipole with enhanced (suppressed) convection centered over the Indian Ocean (western Pacific). Subseasonal teleconnection evolution is assessed with respect to the Pacific-North America (PNA) pattern and the North Atlantic Oscillation (NAO). This evolution is analyzed both in the presence and absence of MJO-related circulation anomalies. It is found that removal of the MJO results only in small shifts in the centers of action of the NAO and PNA, and that in either case there is a small but significant lag in which the NAO leads a PNA pattern of opposite phase. Barotropic vorticity analysis suggests that this relationship may result in part from excitation of Rossby waves by the NAO in the Asian waveguide. An attempt is made to elegantly differentiate between the MJO extratropical response and patterns of variability more internal to the extratropics. Analysis of upper-level streamfunction anomalies is successful in this regard, and it is suggested that this is the preferred method for the real time monitoring of tropical-extratropical teleconnections. The extreme 2013-2014 North American winter is reconstructed using teleconnection analysis, and it is found that the North Pacific Oscillation-West Pacific (NPO/WP) pattern was the leading contributor to climate anomalies over much of North America. Such attribution is cautionary given the propensity to implicate the tropics for all midlatitude climate anomalies based on the El Niño-Southern Oscillation (ENSO) paradigm. A recent hypothesis of such tropical influence is presented and challenged.
Resumo:
The purpose of this dissertation is to evaluate the potential downstream influence of the Indian Ocean (IO) on El Niño/Southern Oscillation (ENSO) forecasts through the oceanic pathway of the Indonesian Throughflow (ITF), atmospheric teleconnections between the IO and Pacific, and assimilation of IO observations. Also the impact of sea surface salinity (SSS) in the Indo-Pacific region is assessed to try to address known problems with operational coupled model precipitation forecasts. The ITF normally drains warm fresh water from the Pacific reducing the mixed layer depths (MLD). A shallower MLD amplifies large-scale oceanic Kelvin/Rossby waves thus giving ~10% larger response and more realistic ENSO sea surface temperature (SST) variability compared to observed when the ITF is open. In order to isolate the impact of the IO sector atmospheric teleconnections to ENSO, experiments are contrasted that selectively couple/decouple the interannual forcing in the IO. The interannual variability of IO SST forcing is responsible for 3 month lagged widespread downwelling in the Pacific, assisted by off-equatorial curl, leading to warmer NINO3 SST anomaly and improved ENSO validation (significant from 3-9 months). Isolating the impact of observations in the IO sector using regional assimilation identifies large-scale warming in the IO that acts to intensify the easterlies of the Walker circulation and increases pervasive upwelling across the Pacific, cooling the eastern Pacific, and improving ENSO validation (r ~ 0.05, RMS~0.08C). Lastly, the positive impact of more accurate fresh water forcing is demonstrated to address inadequate precipitation forecasts in operational coupled models. Aquarius SSS assimilation improves the mixed layer density and enhances mixing, setting off upwelling that eventually cools the eastern Pacific after 6 months, counteracting the pervasive warming of most coupled models and significantly improving ENSO validation from 5-11 months. In summary, the ITF oceanic pathway, the atmospheric teleconnection, the impact of observations in the IO, and improved Indo-Pacific SSS are all responsible for ENSO forecast improvements, and so each aspect of this study contributes to a better overall understanding of ENSO. Therefore, the upstream influence of the IO should be thought of as integral to the functioning of ENSO phenomenon.