4 resultados para ENERGY LANDSCAPE MODEL
em DRUM (Digital Repository at the University of Maryland)
Resumo:
RNA is an underutilized target for drug discovery. Once thought to be a passive carrier of genetic information, RNA is now known to play a critical role in essentially all aspects of biology including signaling, gene regulation, catalysis, and retroviral infection. It is now well-established that RNA does not exist as a single static structure, but instead populates an ensemble of energetic minima along a free-energy landscape. Knowledge of this structural landscape has become an important goal for understanding its diverse biological functions. In this case, NMR spectroscopy has emerged as an important player in the characterization of RNA structural ensembles, with solution-state techniques accounting for almost half of deposited RNA structures in the PDB, yet the rate of RNA structure publication has been stagnant over the past decade. Several bottlenecks limit the pace of RNA structure determination by NMR: the high cost of isotopic labeling, tedious and ambiguous resonance assignment methods, and a limited database of RNA optimized pulse programs. We have addressed some of these challenges to NMR characterization of RNA structure with applications to various RNA-drug targets. These approaches will increasingly become integral to designing new therapeutics targeting RNA.
Resumo:
This dissertation covers two separate topics in statistical physics. The first part of the dissertation focuses on computational methods of obtaining the free energies (or partition functions) of crystalline solids. We describe a method to compute the Helmholtz free energy of a crystalline solid by direct evaluation of the partition function. In the many-dimensional conformation space of all possible arrangements of N particles inside a periodic box, the energy landscape consists of localized islands corresponding to different solid phases. Calculating the partition function for a specific phase involves integrating over the corresponding island. Introducing a natural order parameter that quantifies the net displacement of particles from lattices sites, we write the partition function in terms of a one-dimensional integral along the order parameter, and evaluate this integral using umbrella sampling. We validate the method by computing free energies of both face-centered cubic (FCC) and hexagonal close-packed (HCP) hard sphere crystals with a precision of $10^{-5}k_BT$ per particle. In developing the numerical method, we find several scaling properties of crystalline solids in the thermodynamic limit. Using these scaling properties, we derive an explicit asymptotic formula for the free energy per particle in the thermodynamic limit. In addition, we describe several changes of coordinates that can be used to separate internal degrees of freedom from external, translational degrees of freedom. The second part of the dissertation focuses on engineering idealized physical devices that work as Maxwell's demon. We describe two autonomous mechanical devices that extract energy from a single heat bath and convert it into work, while writing information onto memory registers. Additionally, both devices can operate as Landauer's eraser, namely they can erase information from a memory register, while energy is dissipated into the heat bath. The phase diagrams and the efficiencies of the two models are solved and analyzed. These two models provide concrete physical illustrations of the thermodynamic consequences of information processing.
Resumo:
The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.
Resumo:
The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.