3 resultados para Dynamic System
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.
Resumo:
Since the end of the Cold War, recurring civil conflicts have been the dominant form of violent armed conflict in the world, accounting for 70% of conflicts active between 2000-2013. Duration and intensity of episodes within recurring conflicts in Africa exhibit four behaviors characteristic of archetypal dynamic system structures. The overarching questions asked in this study are whether these patterns are robustly correlated with fundamental concepts of resiliency in dynamic systems that scale from micro-to macro levels; are they consistent with theoretical risk factors and causal mechanisms; and what are the policy implications. Econometric analysis and dynamic systems modeling of 36 conflicts in Africa between 1989 -2014 are combined with process tracing in a case study of Somalia to evaluate correlations between state characteristics, peace operations and foreign aid on the likelihood of observed conflict patterns, test hypothesized causal mechanisms across scales, and develop policy recommendations for increasing human security while decreasing resiliency of belligerents. Findings are that observed conflict patterns scale from micro to macro levels; are strongly correlated with state characteristics that proxy a mix of cooperative (e.g., gender equality) and coercive (e.g., security forces) conflict-balancing mechanisms; and are weakly correlated with UN and regional peace operations and humanitarian aid. Interactions between peace operations and aid interventions that effect conflict persistence at micro levels are not seen in macro level analysis, due to interdependent, micro-level feedback mechanisms, sequencing, and lagged effects. This study finds that the dynamic system structures associated with observed conflict patterns contain tipping points between balancing mechanisms at the interface of micro-macro level interactions that are determined as much by factors related to how intervention policies are designed and implemented, as what they are. Policy implications are that reducing risk of conflict persistence requires that peace operations and aid interventions (1) simultaneously increase transparency, promote inclusivity (with emphasis on gender equality), and empower local civilian involvement in accountability measures at the local levels; (2) build bridges to horizontally and vertically integrate across levels; and (3) pave pathways towards conflict transformation mechanisms and justice that scale from the individual, to community, regional, and national levels.
Resumo:
Flexible cylindrical structures subjected to wind loading experience vibrations from periodic shedding of vortices in their wake. Vibrations become excessive when the natural frequencies of the cylinder coincide with the vortex shedding frequency. In this study, cylinder vibrations are transmitted to a beam inside the structure via dynamic magnifier system. This system amplifies the strain experienced by piezoelectric patches bonded to the beam to maximize the conversion from vibrational energy into electrical energy. Realworld applicability is tested using a wind tunnel to create vortex shedding and comparing the results to finite element modeling that shows the structural vibrational modes. A crucial part of this study is conditioning and storing the harvested energy, focusing on theoretical modeling, design parameter optimization, and experimental validation. The developed system is helpful in designing wind-induced energy harvesters to meet the necessity for novel energy resources.