4 resultados para Drug Costs
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Gemstone Team Risky Business
Resumo:
The blood brain barrier (BBB) is a semi-permeable membrane separating the brain from the bloodstream, preventing many drugs that treat neurological diseases, such as Alzheimer’s and Parkinson’s, from reaching the brain. Our project aimed to create a novel drug delivery system targeting the brain during neural inflammation. We developed a cationic solid lipid nanoparticle (CSLN) complex composed of cationic nanoparticles, biotin, streptavidin, and anti-vascular cell adhesion molecule-1 (anti- VCAM-1) antibodies. The anti-VCAM-1 antibody is used to target VCAM-1, a cell adhesion protein found on the BBB endothelium. VCAM-1 expression is elevated in the presence of inflammatory molecules, such as tumor necrosis factor-alpha (TNF- α). Through the use of a simple BBB model, results showed that our novel drug delivery system experienced some level of success in targeting the brain inflammation due to increasing TNF-α concentrations. This is promising for drug delivery research and provides support for VCAM-1 targeting using more robust and complex BBB models.
Resumo:
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.
The tithe: Public research university STEM faculty perspectives on sponsored research indirect costs
Resumo:
This study sought to understand the phenomenon of faculty involvement in indirect cost under-recovery. The focus of the study was on public research university STEM (science, technology, engineering and mathematics) faculty, and their perspectives on, and behavior towards, a higher education fiscal policy. The explanatory scheme was derived from anthropological theory, and incorporated organizational culture, faculty socialization, and political bargaining models in the conceptual framework. This study drew on two key assumptions. The first assumption was that faculty understanding of, and behavior toward, indirect cost recovery represents values, beliefs, and choices drawn from the distinct professional socialization and distinct culture of faculty. The second assumption was that when faculty and institutional administrators are in conflict over indirect cost recovery, the resultant formal administrative decision comes about through political bargaining over critical resources. The research design was a single site, qualitative case study with a focus on learning the meaning of the phenomenon as understood by the informants. In this study the informants were tenured and tenure track research university faculty in the STEM fields who were highly successful at obtaining Federal sponsored research funds, with individual sponsored research portfolios of at least one million dollars. The data consisted of 11 informant interviews, bolstered by documentary evidence. The findings indicated that faculty socialization and organizational culture were the most dominant themes, while political bargaining emerged as significantly less prominent. Public research university STEM faculty are most concerned about the survival of their research programs and the discovery facilitated by their research programs. They resort to conjecture when confronted by the issue of indirect cost recovery. The findings direct institutional administrators to consider less emphasis on compliance and hierarchy when working with expert professionals such as science faculty. Instead a more effective focus might be on communication and clarity in budget processes and organizational decision-making, and a concentration on critical administrative support that can relieve faculty administrative burdens. For higher education researchers, the findings suggest that we need to create more sophisticated models to help us understand organizations dependent on expert professionals.