3 resultados para Digital information environments
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Peer-to-peer information sharing has fundamentally changed customer decision-making process. Recent developments in information technologies have enabled digital sharing platforms to influence various granular aspects of the information sharing process. Despite the growing importance of digital information sharing, little research has examined the optimal design choices for a platform seeking to maximize returns from information sharing. My dissertation seeks to fill this gap. Specifically, I study novel interventions that can be implemented by the platform at different stages of the information sharing. In collaboration with a leading for-profit platform and a non-profit platform, I conduct three large-scale field experiments to causally identify the impact of these interventions on customers’ sharing behaviors as well as the sharing outcomes. The first essay examines whether and how a firm can enhance social contagion by simply varying the message shared by customers with their friends. Using a large randomized field experiment, I find that i) adding only information about the sender’s purchase status increases the likelihood of recipients’ purchase; ii) adding only information about referral reward increases recipients’ follow-up referrals; and iii) adding information about both the sender’s purchase as well as the referral rewards increases neither the likelihood of purchase nor follow-up referrals. I then discuss the underlying mechanisms. The second essay studies whether and how a firm can design unconditional incentive to engage customers who already reveal willingness to share. I conduct a field experiment to examine the impact of incentive design on sender’s purchase as well as further referral behavior. I find evidence that incentive structure has a significant, but interestingly opposing, impact on both outcomes. The results also provide insights about senders’ motives in sharing. The third essay examines whether and how a non-profit platform can use mobile messaging to leverage recipients’ social ties to encourage blood donation. I design a large field experiment to causally identify the impact of different types of information and incentives on donor’s self-donation and group donation behavior. My results show that non-profits can stimulate group effect and increase blood donation, but only with group reward. Such group reward works by motivating a different donor population. In summary, the findings from the three studies will offer valuable insights for platforms and social enterprises on how to engineer digital platforms to create social contagion. The rich data from randomized experiments and complementary sources (archive and survey) also allows me to test the underlying mechanism at work. In this way, my dissertation provides both managerial implication and theoretical contribution to the phenomenon of peer-to-peer information sharing.
Resumo:
Malware is a foundational component of cyber crime that enables an attacker to modify the normal operation of a computer or access sensitive, digital information. Despite the extensive research performed to identify such programs, existing schemes fail to detect evasive malware, an increasingly popular class of malware that can alter its behavior at run-time, making it difficult to detect using today’s state of the art malware analysis systems. In this thesis, we present DVasion, a comprehensive strategy that exposes such evasive behavior through a multi-execution technique. DVasion successfully detects behavior that would have been missed by traditional, single-execution approaches, while addressing the limitations of previously proposed multi-execution systems. We demonstrate the accuracy of our system through strong parallels with existing work on evasive malware, as well as uncover the hidden behavior within 167 of 1,000 samples.
Resumo:
An inference task in one in which some known set of information is used to produce an estimate about an unknown quantity. Existing theories of how humans make inferences include specialized heuristics that allow people to make these inferences in familiar environments quickly and without unnecessarily complex computation. Specialized heuristic processing may be unnecessary, however; other research suggests that the same patterns in judgment can be explained by existing patterns in encoding and retrieving memories. This dissertation compares and attempts to reconcile three alternate explanations of human inference. After justifying three hierarchical Bayesian version of existing inference models, the three models are com- pared on simulated, observed, and experimental data. The results suggest that the three models capture different patterns in human behavior but, based on posterior prediction using laboratory data, potentially ignore important determinants of the decision process.