18 resultados para Digital Maryland
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This poster addresses frequently asked questions regarding the Historic Maryland Newspapers Project, such as "What is the National Digital Newspaper Program?" and "How are titles selected for digitization?" It also provides information about the project's funding from the National Endowment for the Humanities (NEH), newspaper titles digitized by the project to date, and the future of the project. This poster was presented at the UMD Libraries Research & Innovative Practice Forum, McKeldin Library, June 8, 2016.
Resumo:
Many farms across Maryland use interns to lighten the overall farm workload and help young people gain practical farming knowledge. Although interns can be a welcome addition to a farm’s workforce, farm employers need to be aware of how to properly compensate interns and the legal consequences of adding them to the payroll.
Resumo:
Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014.
Resumo:
Water quality of parking lot (~1,858 m2) stormwater runoff and its treated effluent flow were analyzed for total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), electrical conductivity (EC), copper, lead and zinc. The novel system under investigation, located at the University of Maryland, College Park, Maryland, includes a standard bioretention facility, underdrained to a cistern to store treated stormwater, and pumped to a vegetable garden for irrigation. The site abstraction, the average bioretention abstraction, and bowl volumes were estimated to be 8500, 4378, and 895 L, respectively; this indicates that rain events of more than 0.45 cm are necessary to produce runoff and more than 0.75 cm will produce system overflow. The cistern water quality indicates good-to-excellent treatment by the system. Compared to local tap water, cistern water has lower concentrations of TP, TN, EC (non-winter), copper, and zinc, indicating a good water source for irrigation.
Resumo:
This study explores the origins and development of honors education at a Historically Black College and University (HBCU), Morgan State University, within the context of the Maryland higher education system. During the last decades, public and private institutions have invested in honors experiences for their high-ability students. These programs have become recruitment magnets while also raising institutional academic profiles, justifying additional campus resources. The history of higher education reveals simultaneous narratives such as the tension of post-desegregated Black colleges facing uncertain futures; and the progress of the rise and popularity of collegiate honors programs. Both accounts contribute to tracing seemingly parallel histories in higher education that speaks to the development of honors education at HBCUs. While the extant literature on honors development at Historically White Institutions (HWIs) of higher education has gradually emerged, our understanding of activity at HBCUs is spotty at best. One connection of these two phenomena is the development of honors programs at HBCUs. Using Morgan State University, I examine the role and purpose of honors education at a public HBCU through archival materials and oral histories. Major unexpected findings that constructed this historical narrative beyond its original scope were the impact of the 1935/6 Murray v Pearson, the first higher education desegregation case. Other emerging themes were Morgan’s decades-long efforts to resist state control of its governance, Maryland’s misuse of Morrill Act funds, and the border state’s resistance to desegregation. Also, the broader histories of Black education, racism, and Black citizenship from Dred Scott and Plessy, the 1863 Emancipation Proclamation to Brown, inform this study. As themes are threaded together, Critical Race Theory provides the framework for understanding the emerging themes. In the immediate wake of the post-desegregation era, HBCUs had to address future challenges such as purpose and mission. Competing with HWIs for high-achieving Black students was one of the unanticipated consequences of the Brown decision. Often marginalized from higher education research literature, this study will broaden the research repository of honors education by documenting HBCU contributions despite a challenging landscape.
Resumo:
Peer-to-peer information sharing has fundamentally changed customer decision-making process. Recent developments in information technologies have enabled digital sharing platforms to influence various granular aspects of the information sharing process. Despite the growing importance of digital information sharing, little research has examined the optimal design choices for a platform seeking to maximize returns from information sharing. My dissertation seeks to fill this gap. Specifically, I study novel interventions that can be implemented by the platform at different stages of the information sharing. In collaboration with a leading for-profit platform and a non-profit platform, I conduct three large-scale field experiments to causally identify the impact of these interventions on customers’ sharing behaviors as well as the sharing outcomes. The first essay examines whether and how a firm can enhance social contagion by simply varying the message shared by customers with their friends. Using a large randomized field experiment, I find that i) adding only information about the sender’s purchase status increases the likelihood of recipients’ purchase; ii) adding only information about referral reward increases recipients’ follow-up referrals; and iii) adding information about both the sender’s purchase as well as the referral rewards increases neither the likelihood of purchase nor follow-up referrals. I then discuss the underlying mechanisms. The second essay studies whether and how a firm can design unconditional incentive to engage customers who already reveal willingness to share. I conduct a field experiment to examine the impact of incentive design on sender’s purchase as well as further referral behavior. I find evidence that incentive structure has a significant, but interestingly opposing, impact on both outcomes. The results also provide insights about senders’ motives in sharing. The third essay examines whether and how a non-profit platform can use mobile messaging to leverage recipients’ social ties to encourage blood donation. I design a large field experiment to causally identify the impact of different types of information and incentives on donor’s self-donation and group donation behavior. My results show that non-profits can stimulate group effect and increase blood donation, but only with group reward. Such group reward works by motivating a different donor population. In summary, the findings from the three studies will offer valuable insights for platforms and social enterprises on how to engineer digital platforms to create social contagion. The rich data from randomized experiments and complementary sources (archive and survey) also allows me to test the underlying mechanism at work. In this way, my dissertation provides both managerial implication and theoretical contribution to the phenomenon of peer-to-peer information sharing.
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.
Resumo:
This research-design thesis explores the implementation of Regenerative Stormwater Conveyance (RSC) as a retrofit of an existing impervious drainage system in a small catchment in the degraded Jones Falls watershed in Baltimore City. An introduction to RSC is provided, placing its development within a theoretical context of novel ecosystems, biomimicry and Nassauer and Opdam’s (2008) model of landscape innovation. The case site is in Baltimore’s Hampden neighborhood on City-owned land adjacent to rowhomes, open space and an access point to a popular wooded trail along a local stream. The design proposal employs RSC to retrofit an ill-performing stormwater system, simultaneously providing a range of ecological, social and economic services; water quantity, water quality and economic performance of the proposed RSC are quantified. While the proposed design is site-specific the model is adaptable for retrofitting other small-scale impervious drainage systems, providing a strategic tool in addressing Baltimore City’s stormwater challenges.
Resumo:
Presentation from the MARAC conference in Boston, MA on March 18-21, 2015. S12 - History in Action: Collaboration in Academia
Resumo:
Presentation from the MARAC conference in Roanoke, VA on October 7–10, 2015. S6 - Digital Archives: New Colleagues, New Solutions.
Resumo:
Presentation from the MARAC conference in Baltimore, MD on October 16–18, 2014. S15 - Wikipedia: Getting Involved and Increasing Discoverability.
Resumo:
The Digital Conversion and Media Reformatting plan was written in 2012 and revised 2013-2014, as a five-year plan for the newly established department at the University of Maryland Libraries under the Digital Systems and Stewardship Division. The plan focuses on increasing digitization production, both in-house and through vendors, and creates a model for the management of this production.
Resumo:
Multi-peril crop insurance is a valuable risk management tool which allows you to insure against losses on your farm due to adverse weather conditions, price fluctuations, and unavoidable pests and diseases. It shifts unavoidable production risks to an insurance company for the payment of a fixed amount of premium per acre. This publication assists readers in understanding the basics of the federal crop insurance program.
Resumo:
To conserve and protect the State's water resources the State of Maryland controls the appropriation or use of its surface waters and groundwater. State law requires all agricultural operations to comply with the water appropriation permitting process, including traditional forms of agriculture, livestock and poultry operations, nursery operations and aquaculture.
Resumo:
This design-research thesis suggests that the improvement of North East Street performances by using Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices. Heavily used by a variety of users, often conflicting with one another, University of Maryland Campus Drive would benefit from a major planning and design amelioration to meet the increasing demands of serving as a city main street. The goal of this thesis project is to prioritize the benefits for pedestrians in the right-of-way and improve the pedestrian experience. This goal also responds to the recent North East Street Extension Phrase I of economic renaissances. The goal of this design-research thesis will be achieved focusing on four aspects. First, the plans and designs will suggest to building mixed use blocks, increase the diversity of street economic types and convenience of people’s living. Second, design and plans will propose bike lanes, separate driving lanes from sidewalks and bike lanes by street tree planters, and narrow driving lanes to reduce vehicular traffic volume and speed in order to reduce pedestrian and vehicle conflicts. Third, plans and designs will introduce bioswales, living walls and raingardens to treat and reuse rain water. Finally, the plans and designs will seek to preserve local culture and history by adding murals and farmers market. The outcome of the design-research thesis project is expected to serve as an example of implementing Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices in urban landscape, where transportation, environment and social needs interact with each other.