10 resultados para Digital Communication
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The paradigm shift from traditional print literacy to the postmodern fragmentation, nonlinearity, and multimodality of writing for the Internet is realized in Gregory L. Ulmer’s electracy theory. Ulmer’s open invitation to continually invent the theory has resulted in the proliferation of relays, or weak models, by electracy advocates for understanding and applying the theory. Most relays, however, remain theoretical rather than practical for the writing classroom, and electracy instruction remains rare, potentially hindering the theory’s development. In this dissertation, I address the gap in electracy praxis by adapting, developing, and remixing relays for a functional electracy curriculum with first-year writing students in the Virginia Community College System as the target audience. I review existing electracy relays, pedagogical applications, and assessment practices – Ulmer’s and those of electracy advocates – before introducing my own relays, which take the form of modules. My proposed relay modules are designed for adaptability with the goals of introducing digital natives to the logic of new media and guiding instructors to possible implementations of electracy. Each module contains a justification, core competencies and learning outcomes, optional readings, an assignment with supplemental exercises, and assessment criteria. My Playlist, Transduction, and (Sim)ulation relays follow sound backward curricular design principles and emphasize core hallmarks of electracy as juxtaposed alongside literacy. This dissertation encourages the instruction of new media in Ulmer’s postmodern apparatus in which student invention via the articulation of fragments from various semiotic modes stems from and results in new methodologies for and understandings of digital communication.
Resumo:
In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.
Resumo:
In 1937 Lisa Sergio, "The Golden Voice" of fascist broadcasting from Rome, fled Italy for the United States. Though her mother was American, Sergio was classified as an enemy alien once the United States entered World War II. Yet Sergio became a U.S. citizen in 1944 and built a successful career in radio, working first at NBC and then WQXR in New York City in the days when women's voices were not thought to be appropriate for news or "serious" programming. When she was blacklisted as a communist in the early 1950s, Sergio compensated for the loss of radio employment by becoming principally an author and lecturer in Washington, D.C., until her death in 1989. This dissertation, based on her personal papers, is the first study of Sergio's American mass communication career. It points out the personal, political and social obstacles she faced as a woman in her 52-year career as a commentator on varied aspects of world affairs, religion and feminism. This study includes an examination of the FBI investigations of Sergio and the anti-communist campaigns conducted against her. It concludes that Sergio's success as a public communicator was predicated on both her unusual talents and her ability to transform her public image to reflect ideal American values of womanhood in shifting political climates.
Resumo:
Gemstone Team AUDIO (Assessing and Understanding Deaf Individuals' Occupations)
Resumo:
Gemstone Team FLIP (File Lending in Proximity)
Resumo:
Problem This dissertation presents a literature-based framework for communication in science (with the elements partners, purposes, message, and channel), which it then applies in and amends through an empirical study of how geoscientists use two social computing technologies (SCTs), blogging and Twitter (both general use and tweeting from conferences). How are these technologies used and what value do scientists derive from them? Method The empirical part used a two-pronged qualitative study, using (1) purposive samples of ~400 blog posts and ~1000 tweets and (2) a purposive sample of 8 geoscientist interviews. Blog posts, tweets, and interviews were coded using the framework, adding new codes as needed. The results were aggregated into 8 geoscientist case studies, and general patterns were derived through cross-case analysis. Results A detailed picture of how geoscientists use blogs and twitter emerged, including a number of new functions not served by traditional channels. Some highlights: Geoscientists use SCTs for communication among themselves as well as with the public. Blogs serve persuasion and personal knowledge management; Twitter often amplifies the signal of traditional communications such as journal articles. Blogs include tutorials for peers, reviews of basic science concepts, and book reviews. Twitter includes links to readings, requests for assistance, and discussions of politics and religion. Twitter at conferences provides live coverage of sessions. Conclusions Both blogs and Twitter are routine parts of scientists' communication toolbox, blogs for in-depth, well-prepared essays, Twitter for faster and broader interactions. Both have important roles in supporting community building, mentoring, and learning and teaching. The Framework of Communication in Science was a useful tool in studying these two SCTs in this domain. The results should encourage science administrators to facilitate SCT use of scientists in their organization and information providers to search SCT documents as an important source of information.
Resumo:
This study examined the conversational behaviors of eleven dyads consisting of a person with aphasia (PWA) and their familiar communication partner (CP), and investigated changes in behaviors as a result of attending a communication partner-training program CPT). Attitudes about communication were examined and related to conversational behaviors observed pre- and post- training. Results indicated that CPs and PWA used significantly more facilitating behaviors than barrier behaviors, although most dyads experienced some barriers. A comparison of pre-and post-CPT conversations revealed a significant interaction between time and type of behavior, with the increase in the number of facilitators approaching significance. Overall, persons with aphasia and their conversational partners expressed positive attitudes about communication. There were no significant correlations between scores on attitude surveys and behaviors pre or post-training. This study demonstrated that these dyads employed facilitative conversational behaviors even before CPT, and that facilitative behaviors can increase after a one-day training workshop.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.
Resumo:
The past few decades have witnessed the widespread adaptation of wireless devices such as cellular phones and Wifi-connected laptops, and demand for wireless communication is expected to continue to increase. Though radio frequency (RF) communication has traditionally dominated in this application space, recent decades have seen an increasing interest in the use of optical wireless (OW) communication to supplement RF communications. In contrast to RF communication technology, OW systems offer the use of largely unregulated electromagnetic spectrum and large bandwidths for communication. They also offer the potential to be highly secure against jamming and eavesdropping. Interest in OW has become especially keen in light of the maturation of light-emitting diode (LED) technology. This maturation, and the consequent emerging ubiquity of LED technology in lighting systems, has motivated the exploration of LEDs for wireless communication purposes in a wide variety of applications. Recent interest in this field has largely focused on the potential for indoor local area networks (LANs) to be realized with increasingly common LED-based lighting systems. We envision the use of LED-based OW to serve as a supplement to RF technology in communication between mobile platforms, which may include automobiles, robots, or unmanned aerial vehicles (UAVs). OW technology may be especially useful in what are known as RF-denied environments, in which RF communication may be prohibited or undesirable. The use of OW in these settings presents major challenges. In contrast to many RF systems, OWsystems that operate at ranges beyond a few meters typically require relatively precise alignment. For example, some laser-based optical wireless communication systems require alignment precision to within small fractions of a degree. This level of alignment precision can be difficult to maintain between mobile platforms. Additionally, the use of OW systems in outdoor settings presents the challenge of interference from ambient light, which can be much brighter than any LED transmitter. This thesis addresses these challenges to the use of LED-based communication between mobile platforms. We propose and analyze a dual-link LED-based system that uses one link with a wide transmission beam and relaxed alignment constraints to support a more narrow, precisely aligned, higher-data-rate link. The use of an optical link with relaxed alignment constraints to support the alignment of a more precisely aligned link motivates our exploration of a panoramic imaging receiver for estimating the range and bearing of neighboring nodes. The precision of such a system is analyzed and an experimental system is realized. Finally, we present an experimental prototype of a self-aligning LED-based link.
Resumo:
Healthcare Associated Infections (HAIs) in the United States, are estimated to cost nearly $10 billion annually. And, while device-related infections have decreased, the 60% attributed to pneumonia, gastrointestinal pathogens and surgical site infections (SSIs) remain prevalent. Furthermore, these are often complicated by antibacterial resistance that ultimately cause 2 million illnesses and 23,000 deaths in the US annually. Antibacterial resistance is an issue increasing in severity as existing antibiotics are losing effectiveness, and fewer new antibiotics are being developed. As a result, new methods of combating bacterial virulence are required. Modulating communications of bacteria can alter phenotype, such as biofilm formation and toxin production. Disrupting these communications provides a means of controlling virulence without directly interacting with the bacteria of interest, a strategy contrary to traditional antibiotics. Inter- and intra-species bacterial communication is commonly called quorum sensing because the communication molecules have been linked to phenotypic changes based on bacterial population dynamics. By disrupting the communication, a method called ‘quorum quenching’, bacterial phenotype can be altered. Virulence of bacteria is both population and species dependent; each species will secrete different toxic molecules, and total population will affect bacterial phenotype9. Here, the kinase LsrK and lactonase SsoPox were combined to simultaneously disrupt two different communication pathways with direct ties to virulence leading to SSIs, gastrointestinal infection and pneumonia. To deliver these enzymes for site-specific virulence prevention, two naturally occurring polymers were used, chitosan and alginate. Chitosan, from crustacean shells, and alginate, from seaweed, are frequently studied due to their biocompatibility, availability, self-assembly and biodegrading properties and have already been verified in vivo for wound-dressing. In this work, a novel functionalized capsule of quorum quenching enzymes and biocompatible polymers was constructed and demonstrated to have dual-quenching capability. This combination of immobilized enzymes has the potential for preventing biofilm formation and reducing bacterial toxicity in a wide variety of medical and non-medical applications.