2 resultados para Device architectures
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.
Resumo:
Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.