4 resultados para Delmarva Bays
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous ecological functions, some of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field-validated, landscape-scale approaches for classifying wetlands based on their expected degree of connectivity with stream networks. During the 2015 water year, flow duration was recorded in non-perennial streams (n = 23) connecting forested wetlands and nearby perennial streams on the Delmarva Peninsula (Maryland, USA). Field and GIS-derived landscape metrics (indicators of catchment, wetland, non-perennial stream, and soil characteristics) were assessed as predictors of wetland-stream connectivity (duration, seasonal onset and offset dates). Connection duration was most strongly correlated with non-perennial stream geomorphology and wetland characteristics. A final GIS-based stepwise regression model (adj-R2 = 0.74, p < 0.0001) described wetland-stream connection duration as a function of catchment area, wetland area and number, and soil available water storage.
Resumo:
Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.
Resumo:
To better address stream impairments due to excess nitrogen and phosphorus and to accomplish the goals of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) is requiring states to develop numeric nutrient criteria. An assessment of nutrient concentrations in streams on the Delmarva Peninsula showed that nutrient levels are mostly higher than numeric criteria derived by EPA for the Eastern Coastal Plain, indicating widespread water quality degradation. Here, various approaches were used to derive numeric nutrient criteria from a set of 52 streams sampled across Delmarva. Results of the percentile and y-intercept methods were similar to those obtained elsewhere. Downstream protection values show that if numeric nutrient criteria were implemented for Delmarva streams they would be protective of the Choptank River Estuary, meeting the goals of the Chesapeake Bay Total Maximum Daily Load (TMDL).
Resumo:
Poultry litter contains high levels of natural sex hormones, nitrogen, phosphorous, and trace amounts of heavy metals. Poultry litter runoff from poultry and farming operations in the Delmarva region can have serious impacts on frog development in the Chesapeake Bay Watershed. In this study, we investigated potential effects of litter compounds on Xenopus laevis development when exposed to environmental levels (0.35 and 0.70 g/L) of litter solution. We found that despite rapid hormone degradation, poultry litter solution still affected X. laevis development. Hormones were also more persistent in the lower poultry litter concentration, leading to even greater effects. Slowed growth and increased female gonadal abnormalities were observed after exposure to 0.35 g/L but not to 0.70 g/L of litter solution, and increased male gonadal abnormalities were observed after treatment to both litter concentrations. The developmental impacts examined in this study may have greater environmental impacts on frog reproduction and survival.