3 resultados para Defect introduction and removal process
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This research examines the process of placemaking in LeDroit Park, a residential Washington, DC, neighborhood with a historic district at its core. Unpacking the entwined physical and social evolution of the small community within the context of the Nation’s Capital, this analysis provides insight into the role of urban design and development as well as historic designation on shaping collective identity. Initially planned and designed in 1873 as a gated suburb just beyond the formal L’Enfant-designed city boundary, LeDroit Park was intended as a retreat for middle and upper-class European Americans from the growing density and social diversity of the city. With a mixture of large romantic revival mansions and smaller frame cottages set on grassy plots evocative of an idealized rural village, the physical design was intentionally inwardly-focused. This feeling of refuge was underscored with a physical fence that surrounded the development, intended to prevent African Americans from nearby Howard University and the surrounding neighborhood, from using the community’s private streets to access the City of Washington. Within two decades of its founding, LeDroit Park was incorporated into the District of Columbia, the surrounding fence was demolished, and the neighborhood was racially integrated. Due to increasingly stringent segregation laws and customs in the city, this period of integration lasted less than twenty years, and LeDroit Park developed into an elite African American enclave, using the urban design as a bulwark against the indignities of a segregated city. Throughout the 20th century housing infill and construction increased density, yet the neighborhood never lost the feeling of security derived from the neighborhood plan. Highlighting the architecture and street design, neighbors successfully received historic district designation in 1974 in order to halt campus expansion. After a stalemate that lasted two decades, the neighborhood began another period of transformation, both racial and socio-economic, catalyzed by a multi-pronged investment program led by Howard University. Through interviews with long-term and new community members, this investigation asserts that the 140-year development history, including recent physical interventions, is integral to placemaking, shaping the material character as well as the social identity of residents.
Resumo:
Americans are accustomed to a wide range of data collection in their lives: census, polls, surveys, user registrations, and disclosure forms. When logging onto the Internet, users’ actions are being tracked everywhere: clicking, typing, tapping, swiping, searching, and placing orders. All of this data is stored to create data-driven profiles of each user. Social network sites, furthermore, set the voluntarily sharing of personal data as the default mode of engagement. But people’s time and energy devoted to creating this massive amount of data, on paper and online, are taken for granted. Few people would consider their time and energy spent on data production as labor. Even if some people do acknowledge their labor for data, they believe it is accessory to the activities at hand. In the face of pervasive data collection and the rising time spent on screens, why do people keep ignoring their labor for data? How has labor for data been become invisible, as something that is disregarded by many users? What does invisible labor for data imply for everyday cultural practices in the United States? Invisible Labor for Data addresses these questions. I argue that three intertwined forces contribute to framing data production as being void of labor: data production institutions throughout history, the Internet’s technological infrastructure (especially with the implementation of algorithms), and the multiplication of virtual spaces. There is a common tendency in the framework of human interactions with computers to deprive data and bodies of their materiality. My Introduction and Chapter 1 offer theoretical interventions by reinstating embodied materiality and redefining labor for data as an ongoing process. The middle Chapters present case studies explaining how labor for data is pushed to the margin of the narratives about data production. I focus on a nationwide debate in the 1960s on whether the U.S. should build a databank, contemporary Big Data practices in the data broker and the Internet industries, and the group of people who are hired to produce data for other people’s avatars in the virtual games. I conclude with a discussion on how the new development of crowdsourcing projects may usher in the new chapter in exploiting invisible and discounted labor for data.
Resumo:
Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.