2 resultados para DIET-INDUCED ATHEROSCLEROSIS
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Obesity, currently an epidemic, is a difficult disease to combat because it is marked by both a change in body weight and an underlying dysregulation in metabolism, making consistent weight loss challenging. We sought to elucidate this metabolic dysregulation resulting from diet-induced obesity (DIO) that persists through subsequent weight loss. We hypothesized that weight gain imparts a change in “metabolic set point” persisting through subsequent weight loss and that this modification may involve a persistent change in hepatic AMP-activated protein kinase (AMPK), a key energy-sensing enzyme in the body. To test these hypotheses, we tracked metabolic perturbations through this period, measuring changes in hepatic AMPK. To further understand the role of AMPK we used AICAR, an AMPK activator, following DIO. Our findings established a more dynamic metabolic model of DIO and subsequent weight loss. We observed hepatic AMPK elevation following weight loss, but AICAR administration without similar dieting was unsuccessful in improving metabolic dysregulation. Our findings provide an approach to modeling DIO and subsequent dieting that can be built upon in future studies and hopefully contribute to more effective long-term treatments of obesity.
Resumo:
Calorie restriction (CR) has been established as the only non-genetic method of altering longevity and attenuating biological changes associated with aging. This nutritional paradigm has been effective in nematodes, flies, rodents, dogs and possibly non-human primates. Its long history notwithstanding, little is known regarding the exact mechanism(s) of CR action or its potential impact on the hypothalamic-pituitary-gonadal (HPG) axis. The objectives of this project were to: 1) analyze neuroendocrine changes to the HPG axis that occur with aging and 2) evaluate the effects of moderate CR on reproductive function in male rhesus macaques. Pituitary gene expression profiling, semi-quantitative RT-PCR (sqRT-PCR) and immunohistochemistry showed circadian clock mechanism components present in three age categories of macaques, demonstrated age differences in expression for Per2, indicated differential expression of Per2 and Bmal1 at opposing time points and revealed daily rhythmic expression of REV-ERBα protein. These data indicate the ability of the macaque pituitary to express core-clock genes, their protein products, and to do so in a 24-hour rhythm. Young Adult CON and CR pituitary gene expression profiles detected potential differential expression in <150 probesets. A decline in>TSHR and CGA was detected in CR macaques as measured by sqRT-PCR. Other genes investigated showed no diet-induced changes. Young Adult CON and CR testicular gene expression profiles detected potential differential expression in <300 probesets although mRNA expression was not altered based on sqRT-PCR and real-time RT-PCR. Age-related>and/or diet-induced changes in HSD17β3, INSL3, CSNK1E and CGA were observed in a separate experiment with CGA in Old Adult CR subjects returning to youthful levels. Semen samples were collected from Young Adult CON and CR macaques. Normal spermiogram measures, ZP-binding, AR assay and SCSA® were conducted and indicated no differences between CON and CR-treated animals. Both groups exhibited similar daily testosterone profiles with no differences in mean or maximum levels; however, daily minimum testosterone levels were lower in CON animals. It appears that moderate CR had limited impact on neuroendocrine or reproductive function in male rhesus macaques based on our selected endpoints. Thus, advantageous CR health benefits can be achieved without obvious negative consequences to the HPG axis.