1 resultado para Cyber crime
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Archive of European Integration (3)
- Aston University Research Archive (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Bibloteca do Senado Federal do Brasil (505)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (20)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (6)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (1)
- Digital Peer Publishing (5)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (46)
- Instituto Politécnico do Porto, Portugal (18)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (31)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (7)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (9)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (8)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (49)
- Université de Montréal, Canada (16)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (9)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Malware is a foundational component of cyber crime that enables an attacker to modify the normal operation of a computer or access sensitive, digital information. Despite the extensive research performed to identify such programs, existing schemes fail to detect evasive malware, an increasingly popular class of malware that can alter its behavior at run-time, making it difficult to detect using today’s state of the art malware analysis systems. In this thesis, we present DVasion, a comprehensive strategy that exposes such evasive behavior through a multi-execution technique. DVasion successfully detects behavior that would have been missed by traditional, single-execution approaches, while addressing the limitations of previously proposed multi-execution systems. We demonstrate the accuracy of our system through strong parallels with existing work on evasive malware, as well as uncover the hidden behavior within 167 of 1,000 samples.