3 resultados para Crystalline domains

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation covers two separate topics in statistical physics. The first part of the dissertation focuses on computational methods of obtaining the free energies (or partition functions) of crystalline solids. We describe a method to compute the Helmholtz free energy of a crystalline solid by direct evaluation of the partition function. In the many-dimensional conformation space of all possible arrangements of N particles inside a periodic box, the energy landscape consists of localized islands corresponding to different solid phases. Calculating the partition function for a specific phase involves integrating over the corresponding island. Introducing a natural order parameter that quantifies the net displacement of particles from lattices sites, we write the partition function in terms of a one-dimensional integral along the order parameter, and evaluate this integral using umbrella sampling. We validate the method by computing free energies of both face-centered cubic (FCC) and hexagonal close-packed (HCP) hard sphere crystals with a precision of $10^{-5}k_BT$ per particle. In developing the numerical method, we find several scaling properties of crystalline solids in the thermodynamic limit. Using these scaling properties, we derive an explicit asymptotic formula for the free energy per particle in the thermodynamic limit. In addition, we describe several changes of coordinates that can be used to separate internal degrees of freedom from external, translational degrees of freedom. The second part of the dissertation focuses on engineering idealized physical devices that work as Maxwell's demon. We describe two autonomous mechanical devices that extract energy from a single heat bath and convert it into work, while writing information onto memory registers. Additionally, both devices can operate as Landauer's eraser, namely they can erase information from a memory register, while energy is dissipated into the heat bath. The phase diagrams and the efficiencies of the two models are solved and analyzed. These two models provide concrete physical illustrations of the thermodynamic consequences of information processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation concerns the well-posedness of the Navier-Stokes-Smoluchowski system. The system models a mixture of fluid and particles in the so-called bubbling regime. The compressible Navier-Stokes equations governing the evolution of the fluid are coupled to the Smoluchowski equation for the particle density at a continuum level. First, working on fixed domains, the existence of weak solutions is established using a three-level approximation scheme and based largely on the Lions-Feireisl theory of compressible fluids. The system is then posed over a moving domain. By utilizing a Brinkman-type penalization as well as penalization of the viscosity, the existence of weak solutions of the Navier-Stokes-Smoluchowski system is proved over moving domains. As a corollary the convergence of the Brinkman penalization is proved. Finally, a suitable relative entropy is defined. This relative entropy is used to establish a weak-strong uniqueness result for the Navier-Stokes-Smoluchowski system over moving domains, ensuring that strong solutions are unique in the class of weak solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study proper actions of groups $G \cong \Z/2\Z \ast \Z/2\Z \ast \Z/2\Z$ on affine space of three real dimensions. Since $G$ is nonsolvable, work of Fried and Goldman implies that it preserves a Lorentzian metric. A subgroup $\Gamma < G$ of index two acts freely, and $\R^3/\Gamma$ is a Margulis spacetime associated to a hyperbolic surface $\Sigma$. When $\Sigma$ is convex cocompact, work of Danciger, Gu{\'e}ritaud, and Kassel shows that the action of $\Gamma$ admits a polyhedral fundamental domain bounded by crooked planes. We consider under what circumstances the action of $G$ also admits a crooked fundamental domain. We show that it is possible to construct actions of $G$ that fail to admit crooked fundamental domains exactly when the extended mapping class group of $\Sigma$ fails to act transitively on the top-dimensional simplices of the arc complex of $\Sigma$. We also provide explicit descriptions of the moduli space of $G$ actions that admit crooked fundamental domains.