2 resultados para Cretaceous Sediments
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Stocks of the eastern oyster, Crassostrea virginica, have been declining in Chesapeake Bay since the late 19th century, and current strategies involve restoring culture of Crassostrea virginica on-bottom and in devices suspended within the water column. Sub-tidal suspension culture of Crassostrea virginica in Chesapeake Bay occurs mostly in sheltered inlets and tidal creeks and, thereby, has the potential to influence shallow water biogeochemical processes. To assess the influence of Crassostrea virginica biodeposits and benthic microalgae on sediment nitrogen and phosphorus exchange, field studies with Crassostrea virginica held in aquaculture floats and laboratory experiments were conducted. Enhanced organic nitrogen deposition from Crassostrea virginica biodeposits led to gradual increases in surface sediment nitrogen and pore water ammonium concentrations; however, modifications to pore water concentrations were not always expressed at the sediment-water interface. Benthic microalgae often modulated the influence of biodeposits on sediment nitrogen exchange but, as observed in laboratory experiments, the supply of nitrogen from Crassostrea virginica biodeposits may exceed their biological demand. Organic carbon from biodeposits had varying influences on aerobic respiration but consistently stimulated anaerobic metabolism. Shifts in net phosphorus exchange were driven by this anaerobic remineralization and concentrations of iron and manganese oxy(hydr)oxides, with transitions in fluxes coinciding with changes in benthic photosynthesis and oxidation of surface sediments. Manganese and iron oxy(hydr)oxides from biodeposits supported incorporation of added phosphorus and prevented exchange at the sediment-water interface in the absence of iron-sulfide mineral formation. Differences in the response of shallow water sediments to Crassostrea virginica biodeposits were due to the quality and quantity of biodeposits supplied, as well as the spatial and temporal variability within these sediments. Initial conditions and corresponding reference sediments illustrated the potential for sediment biogeochemistry and nutrient exchange from tidal creek sediments to vary spatially and temporally on relatively small scales. Factors influencing variability within tidal creek sediments were related to shifts in riverine freshwater inputs, macroalgal blooms, nutrient concentrations in overlying waters, and bioirrigation from the clam, Macoma balthica.
Resumo:
Red mangrove (Rhizophora mangle L.) forests have distinct tree-height zones, with tall trees fringing the ocean and shorter trees in interior stands. A long-term nitrogen (N) and phosphorus (P) fertilization experiment in Almirante Bay, Bocas del Toro Province, Panama has shown that tree-height zonation is primarily related to nutrient limitation. This experiment was used to test the effects of in-situ nutrient additions and tree zonation on mangrove sediments. The sediments underlying the experimental R. mangle trees were sampled and N2 fixation, 15N, chlorophyll a, percent N and P, and percent organic biomass were quantified. Both N and P additions significantly affected almost every parameter measured in both zones within this experiment. These results are likely to have implications for management since N and P inputs are predicted to increase throughout the tropics and subtropics worldwide.