2 resultados para Continuous Quantum Variables

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the construction and characterization of a new apparatus that can produce degenerate quantum gases of strontium. The realization of degenerate gases is an important first step toward future studies of quantum magnetism. Three of the four stable isotopes of strontium have been cooled into the degenerate regime. The experiment can make nearly pure Bose-Einstein condensates containing approximately 1x10^4 atoms, for strontium-86, and approximately 4x10^5 atoms, for strontium-84. We have also created degenerate Fermi gases of strontium-87 with a reduced temperature, T/T_F of approximately 0.2. The apparatus will be able to produce Bose-Einstein condensates of strontium-88 with straightforward modifications. We also report the first experimental and theoretical results from the strontium project. We have developed a technique to accelerate the continuous loading of strontium atoms into a magnetic trap. By applying a laser addressing the 3P1 to 3S1 transition in our magneto-optical trap, the rate at which atoms populate the magnetically-trapped 3P2 state can be increased by up to 65%. Quantum degenerate gases of atoms in the metastable 3P0 and 3P2 states are a promising platform for quantum simulation of systems with long-range interactions. We have performed an initial numerical study of a method to transfer the ground state degenerate gases that we can currently produce into one of the metastable states via a three-photon transition. Numerical simulations of the Optical Bloch equations governing the three-photon transition indicate that >90% of a ground state degenerate gas can be transferred into a metastable state.