2 resultados para Constraint induced movement therapy

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis explores the relationship between body and architecture through a metaphorical and literal analysis of prosthetic devices. The thesis questions how the relationship between prosthetics and architecture can inform the design of a building that enables connection, movement and empowerment for its occupants. Driving questions of investigation include: How can a building enable growth, healing and wellbeing? , How can a building embody and reflect human growth and transformation? , and, How can a building enable equivalence between its users? The program of an inpatient prosthetic rehabilitation facility allows for the exploration of these questions and a study for how we can create spaces that influence rehabilitation and growth. Through body and prosthetics analysis the thesis explores what spaces are best for one to grow and develop in and study how concepts, such as connection, movement and empowerment can enable one and enhance one’s quality of life.