3 resultados para Computer storage devices
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.
Resumo:
Gemstone Team FACE
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.