3 resultados para Computer and network security
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This dissertation explores why some states consistently secure food imports at prices higher than the world market price, thereby exacerbating food insecurity domestically. I challenge the idea that free market economics alone can explain these trade behaviors, and instead argue that states take into account political considerations when engaging in food trade that results in inefficient trade. In particular, states that are dependent on imports of staple food products, like cereals, are wary of the potential strategic value of these goods to exporters. I argue that this consideration, combined with the importing state’s ability to mitigate that risk through its own forms of political or economic leverage, will shape the behavior of the importing state and contribute to its potential for food security. In addition to cross-national analyses, I use case studies of the Gulf Cooperation Council states and Jordan to demonstrate how the political tools available to these importers affect their food security. The results of my analyses suggest that when import dependent states have access to forms of political leverage, they are more likely to trade efficiently, thereby increasing their potential for food security.
Resumo:
I examine determinants of refugee return after conflicts. I argue that institutional constraints placed on the executive provide a credible commitment that signals to refugees that the conditions required for durable return will be created. This results in increased return flows for refugees. Further, when credible commitments are stronger in the country of origin than in the country of asylum, the level of return increases. Finally, I find that specific commitments made to refugees in the peace agreement do not lead to increased return because they are not credible without institutional constraints. Using data on returnees that has only recently been made available, along with network analysis and an original coding of the provisions in refugee agreements, statistical results are found to support this theory. An examination of cases in Djibouti, Sierra Leone, and Liberia provides additional support for this argument.
Resumo:
The past several years have seen the surprising and rapid rise of Bitcoin and other “cryptocurrencies.” These are decentralized peer-to-peer networks that allow users to transmit money, tocompose financial instruments, and to enforce contracts between mutually distrusting peers, andthat show great promise as a foundation for financial infrastructure that is more robust, efficientand equitable than ours today. However, it is difficult to reason about the security of cryptocurrencies. Bitcoin is a complex system, comprising many intricate and subtly-interacting protocol layers. At each layer it features design innovations that (prior to our work) have not undergone any rigorous analysis. Compounding the challenge, Bitcoin is but one of hundreds of competing cryptocurrencies in an ecosystem that is constantly evolving. The goal of this thesis is to formally reason about the security of cryptocurrencies, reining in their complexity, and providing well-defined and justified statements of their guarantees. We provide a formal specification and construction for each layer of an abstract cryptocurrency protocol, and prove that our constructions satisfy their specifications. The contributions of this thesis are centered around two new abstractions: “scratch-off puzzles,” and the “blockchain functionality” model. Scratch-off puzzles are a generalization of the Bitcoin “mining” algorithm, its most iconic and novel design feature. We show how to provide secure upgrades to a cryptocurrency by instantiating the protocol with alternative puzzle schemes. We construct secure puzzles that address important and well-known challenges facing Bitcoin today, including wasted energy and dangerous coalitions. The blockchain functionality is a general-purpose model of a cryptocurrency rooted in the “Universal Composability” cryptography theory. We use this model to express a wide range of applications, including transparent “smart contracts” (like those featured in Bitcoin and Ethereum), and also privacy-preserving applications like sealed-bid auctions. We also construct a new protocol compiler, called Hawk, which translates user-provided specifications into privacy-preserving protocols based on zero-knowledge proofs.