1 resultado para Computational music theory
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- Repository Napier (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Anuario Musical Espanhol (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (95)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Biodiversity Heritage Library, United States (16)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- CentAUR: Central Archive University of Reading - UK (9)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (200)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (20)
- DRUM (Digital Repository at the University of Maryland) (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Castelo Branco - Portugal (2)
- Instituto Politécnico do Porto, Portugal (35)
- Martin Luther Universitat Halle Wittenberg, Germany (16)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (3)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (28)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (29)
- Scielo Saúde Pública - SP (36)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (15)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (3)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (19)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (94)
- Université de Montréal (1)
- Université de Montréal, Canada (6)
- University of Michigan (35)
- University of Queensland eSpace - Australia (217)
- University of Washington (3)
Resumo:
There are hundreds of millions of songs available to the public, necessitating the use of music recommendation systems to discover new music. Currently, such systems account for only the quantitative musical elements of songs, failing to consider aspects of human perception of music and alienating the listener’s individual preferences from recommendations. Our research investigated the relationships between perceptual elements of music, represented by the MUSIC model, with computational musical features generated through The Echo Nest, to determine how a psychological representation of music preference can be incorporated into recommendation systems to embody an individual’s music preferences. Our resultant model facilitates computation of MUSIC factors using The Echo Nest features, and can potentially be integrated into recommendation systems for improved performance.