2 resultados para Competition model
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Terrestrial and oceanic biomass carbon sinks help reduce anthropogenic CO2 emissions and mitigate the long-term effect of increasing atmospheric CO2. Woody plants have large carbon pools because of their long residence time, however N availability can negatively impact tree responses to elevated CO2. Seasonal cycling of internal N in trees is a component that contributes to fitness especially in N limited environments. It involves resorption from senescing leaves of deciduous trees and storage as vegetative storage proteins (VSP) in perennial organs. Populus is a model organism for tree biology that efficiently recycles N. Bark storage proteins (BSP) are the most abundant VSP that serves as seasonal N reserves. Here I show how poplar growth is influenced by N availability and how growth is influenced by shoot competition for stored N reserves. I also provide data that indicates that auxin mediates BSP catabolism during renewed shoot growth. Understanding the components of N accumulation, remobilization and utilization can provide insights leading to increasing N use efficiency (NUE) of perennial plants.
Resumo:
This dissertation consists of two chapters of theoretical studies that investigate the effect of financial constraints and market competition on research and development (R&D) investments. In the first chapter, I explore the impact of financial constraints on two different types of R&D investments. In the second chapter, I examine the impact of market competition on the relationship between financial constraints and R&D investments. In the first chapter, I develop a dynamic monopoly model to study a firm’s R&D strategy. Contrary to intuition, I show that a financially constrained firm may invest more aggressively in R&D projects than an unconstrained firm. Financial constraints introduce a risk that a firm may run out of money before its project bears fruit, which leads to involuntary termination on an otherwise positive-NPV project. For a company that relies on cash flow from assets in place to keep its R&D project alive, early success can be relatively important. I find that when the discovery process can be expedited by heavier investment (“accelerable” projects), a financially constrained company may find it optimal to “over”-invest in order to raise the probability of project survival. The over-investment will not happen if the project is only “scalable” (investment scales up payoffs). The model generates several testable implications regarding over-investment and project values. In the second chapter, I study the effects of competition on R&D investments in a duopoly framework. Using a homogeneous duopoly model where two unconstrained firms compete head to head in an R&D race, I find that competition has no effect on R&D investment if the project is not accelerable, and the competing firms are not constrained. In a heterogeneous duopoly model where a financially constrained firm competes against an unconstrained firm, I discover interesting strategic interactions that lead to preemption by the constrained firm in equilibrium. The unconstrained competitor responds to its constrained rival’s investment in an inverted-U shape fashion. When the constrained competitor has high cash flow risk, it accelerates the innovation in equilibrium, while the unconstrained firm invests less aggressively and waits for its rival to quit the race due to shortage of funds.