2 resultados para Choptank River
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Since 1993 Atlantic menhaden has experienced sustained low juvenile production (recruitment) in the Chesapeake Bay. Factors controlling growth, abundance, and mortality of larval and juvenile menhaden change throughout ontogeny such that larval growth rates could carry over to juvenile growth and survival. The effects of winter thermal conditions on the hatch dates and growth of larval and juvenile Atlantic menhaden in Atlantic shelf and Chesapeake Bay habitats were examined using otolith (ear-stone) increment analyses and growth models. For 2010-2013, truncated hatch-date distributions provided evidence for a winter recruitment bottleneck in Atlantic menhaden caused by cold temperatures. Hatch-dates of surviving juveniles were skewed towards warmer months for years characterized by colder temperatures. Reduced larval growth rates, influenced by reduced temperature and food availability, carried over to juvenile growth rates. A growing degree-day model performed well in simulating observed juvenile growth rates in the Choptank River tributary of Chesapeake Bay.
Resumo:
To better address stream impairments due to excess nitrogen and phosphorus and to accomplish the goals of the Clean Water Act, the U.S. Environmental Protection Agency (EPA) is requiring states to develop numeric nutrient criteria. An assessment of nutrient concentrations in streams on the Delmarva Peninsula showed that nutrient levels are mostly higher than numeric criteria derived by EPA for the Eastern Coastal Plain, indicating widespread water quality degradation. Here, various approaches were used to derive numeric nutrient criteria from a set of 52 streams sampled across Delmarva. Results of the percentile and y-intercept methods were similar to those obtained elsewhere. Downstream protection values show that if numeric nutrient criteria were implemented for Delmarva streams they would be protective of the Choptank River Estuary, meeting the goals of the Chesapeake Bay Total Maximum Daily Load (TMDL).