2 resultados para Cholangiopancreatography, Endoscopic Retrograde

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The artistic play of light seen on a pyramid in some Mayan ruins located in Cancun, Mexico provided the inspiration for Vision of Equinox. On both the spring and autumn equinox days, the sunlight projected on the pyramid forms a shape which looks like a serpent moving on the stairway of the pyramid. Vision of Equinox was composed with an image of light as the model for the artistic transfiguration of sound. The light image of sound changes its shape in each stage of the piece, using the orchestra in different ways - sometimes like a chamber ensemble, sometimes like one big instrument. The image of light casting on a pyramid is expressed by descending melodic lines that can be heard several times in the piece. At the final climax of the work, a complete and embodied artistic figure is formed and stated, expressing the appearance of the Mayan god Quetzalcoatl, the serpent, in my own imagination. The light and shadow which comprise this pyramid art are treated as two contrasting elements in my composition and become the two main motives in this piece. To express these two contrasting elements, I picked the numbers "5" and "2," and used them as "key numbers" in this piece. As a result, the intervals of a fifth and a second (sometimes inverted as a seventh) are the two main intervals used in the structure. The interval of a fifth was taken into account for the construction of the pyramid, which has five points of contact. The interval of a second was selected as a contrasting sonority to the fifth. Further, the numbers "5" and "2" are used as the number of notes which form the main motives in this piece; quintuplets are used throughout this piece, and the short motive made by two sixteenth notes is used as one of the main motives in this piece. Moreover, the shape of the pyramid provided a concept of symmetry, which is expressed by the setting of a central point of the music (pitch center) as well as the use of retrograde and inversion in this piece.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In stable solar systems, planets remain in nearly elliptical orbits around their stars. Over longer timescales, however, their orbital shapes and sizes change due to mutual gravitational perturbations. Orbits of satellites around a planet vary for the same reason. Because of their interactions, the orbits of planets and satellites today are different from what they were earlier. In order to determine their original orbits, which are critical constraints on formation theories, it is crucial to understand how orbits evolve over the age of the Solar System. Depending on their timescale, we classify orbital interactions as either short-term (orbital resonances) or long-term (secular evolution). My work involves examples of both interaction types. Resonant history of the small Neptunian satellites In satellite systems, tidal migration brings satellite orbits in and out of resonances. During a resonance passage, satellite orbits change dramatically in a very short period of time. We investigate the resonant history of the six small Neptunian moons. In this unique system, the exotic orbit of the large captured Triton (with a circular, retrograde, and highly tilted orbit) influences the resonances among the small satellites very strongly. We derive an analytical framework which can be applied to Neptune's satellites and to similar systems. Our numerical simulations explain the current orbital tilts of the small satellites as well as constrain key physical parameters of both Neptune and its moons. Secular orbital interactions during eccentricity damping Long-term periodic changes of orbital shape and orientation occur when two or more planets orbit the same star. The variations of orbital elements are superpositions of the same number of fundamental modes as the number of planets in the system. We investigate how this effect interacts with other perturbations imposed by external disturbances, such as the tides and relativistic effects. Through analytical studies of a system consisting of two planets, we find that an external perturbation exerted on one planet affects the other indirectly. We formulate a general theory for how both orbits evolve in response to an arbitrary externally-imposed slow change in eccentricity.