3 resultados para Charge transport mechanism transitions

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium (Mg) battery is considered as a promising candidate for the next generation battery technology that could potentially replace the current lithium (Li)-ion batteries due to the following factors. Magnesium possesses a higher volumetric capacity than commercialized Li-ion battery anode materials. Additionally, the low cost and high abundance of Mg compared to Li makes Mg batteries even more attractive. Moreover, unlike metallic Li anodes which have a tendency to develop a dendritic structure on the surface upon the cycling of the battery, Mg metal is known to be free from such a hazardous phenomenon. Due to these merits of Mg as an anode, the topic of rechargea¬ble Mg batteries has attracted considerable attention among researchers in the last few decades. However, the aforementioned advantages of Mg batteries have not been fully utilized due to the serious kinetic limitation of Mg2+ diffusion process in many hosting compounds which is believed to be due to a strong electrostatic interaction between divalent Mg2+ ions and hosting matrix. This serious kinetic hindrance is directly related to the lack of cathode materials for Mg battery that provide comparable electrochemical performances to that of Li-based system. Manganese oxide (MnO2) is one of the most well studied electrode materials due to its excellent electrochemical properties, including high Li+ ion capacity and relatively high operating voltage (i.e., ~ 4 V vs. Li/Li+ for LiMn2O4 and ~ 3.2 V vs. Mg/Mg2+). However, unlike the good electrochemical properties of MnO2 realized in Li-based systems, rather poor electrochemical performances have been reported in Mg based systems, particularly with low capacity and poor cycling performances. While the origin of the observed poor performances is believed to be due to the aforementioned strong ionic interaction between the Mg2+ ions and MnO2 lattice resulting in a limited diffusion of Mg2+ ions in MnO2, very little has been explored regarding the charge storage mechanism of MnO2 with divalent Mg2+ ions. This dissertation investigates the charge storage mechanism of MnO2, focusing on the insertion behaviors of divalent Mg2+ ions and exploring the origins of the limited Mg2+ insertion behavior in MnO2. It is found that the limited Mg2+ capacity in MnO2 can be significantly improved by introducing water molecules in the Mg electrolyte system, where the water molecules effectively mitigated the kinetic hindrance of Mg2+ insertion process. The combination of nanostructured MnO2 electrode and water effect provides a synergic effect demonstrating further enhanced Mg2+ insertion capability. Furthermore, it is demonstrated in this study that pre-cycling MnO2 electrodes in water-containing electrolyte activates MnO2 electrode, after which improved Mg2+ capacity is maintained in dry Mg electrolyte. Based on a series of XPS analysis, a conversion mechanism is proposed where magnesiated MnO2 undergoes a conversion reaction to Mg(OH)2 and MnOx and Mn(OH)y species in the presence of water molecules. This conversion process is believed to be the driving force that generates the improved Mg2+ capacity in MnO2 along with the water molecule’s charge screening effect. Finally, it is discussed that upon a consecutive cycling of MnO2 in the water-containing Mg electrolyte, structural water is generated within the MnO2 lattice, which is thought to be the origin of the observed activation phenomenon. The results provided in this dissertation highlight that the divalency of Mg2+ ions result in very different electrochemical behaviors than those of the well-studied monovalent Li+ ions towards MnO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Data files to accompany the article in Nature Communications, in press.