3 resultados para Case-based reasoning system
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Large component-based systems are often built from many of the same components. As individual component-based software systems are developed, tested and maintained, these shared components are repeatedly manipulated. As a result there are often significant overlaps and synergies across and among the different test efforts of different component-based systems. However, in practice, testers of different systems rarely collaborate, taking a test-all-by-yourself approach. As a result, redundant effort is spent testing common components, and important information that could be used to improve testing quality is lost. The goal of this research is to demonstrate that, if done properly, testers of shared software components can save effort by avoiding redundant work, and can improve the test effectiveness for each component as well as for each component-based software system by using information obtained when testing across multiple components. To achieve this goal I have developed collaborative testing techniques and tools for developers and testers of component-based systems with shared components, applied the techniques to subject systems, and evaluated the cost and effectiveness of applying the techniques. The dissertation research is organized in three parts. First, I investigated current testing practices for component-based software systems to find the testing overlap and synergy we conjectured exists. Second, I designed and implemented infrastructure and related tools to facilitate communication and data sharing between testers. Third, I designed two testing processes to implement different collaborative testing algorithms and applied them to large actively developed software systems. This dissertation has shown the benefits of collaborative testing across component developers who share their components. With collaborative testing, researchers can design algorithms and tools to support collaboration processes, achieve better efficiency in testing configurations, and discover inter-component compatibility faults within a minimal time window after they are introduced.
Resumo:
This dissertation investigates customer behavior modeling in service outsourcing and revenue management in the service sector (i.e., airline and hotel industries). In particular, it focuses on a common theme of improving firms’ strategic decisions through the understanding of customer preferences. Decisions concerning degrees of outsourcing, such as firms’ capacity choices, are important to performance outcomes. These choices are especially important in high-customer-contact services (e.g., airline industry) because of the characteristics of services: simultaneity of consumption and production, and intangibility and perishability of the offering. Essay 1 estimates how outsourcing affects customer choices and market share in the airline industry, and consequently the revenue implications from outsourcing. However, outsourcing decisions are typically endogenous. A firm may choose whether to outsource or not based on what a firm expects to be the best outcome. Essay 2 contributes to the literature by proposing a structural model which could capture a firm’s profit-maximizing decision-making behavior in a market. This makes possible the prediction of consequences (i.e., performance outcomes) of future strategic moves. Another emerging area in service operations management is revenue management. Choice-based revenue systems incorporate discrete choice models into traditional revenue management algorithms. To successfully implement a choice-based revenue system, it is necessary to estimate customer preferences as a valid input to optimization algorithms. The third essay investigates how to estimate customer preferences when part of the market is consistently unobserved. This issue is especially prominent in choice-based revenue management systems. Normally a firm only has its own observed purchases, while those customers who purchase from competitors or do not make purchases are unobserved. Most current estimation procedures depend on unrealistic assumptions about customer arriving. This study proposes a new estimation methodology, which does not require any prior knowledge about the customer arrival process and allows for arbitrary demand distributions. Compared with previous methods, this model performs superior when the true demand is highly variable.
Resumo:
The proliferation of new mobile communication devices, such as smartphones and tablets, has led to an exponential growth in network traffic. The demand for supporting the fast-growing consumer data rates urges the wireless service providers and researchers to seek a new efficient radio access technology, which is the so-called 5G technology, beyond what current 4G LTE can provide. On the other hand, ubiquitous RFID tags, sensors, actuators, mobile phones and etc. cut across many areas of modern-day living, which offers the ability to measure, infer and understand the environmental indicators. The proliferation of these devices creates the term of the Internet of Things (IoT). For the researchers and engineers in the field of wireless communication, the exploration of new effective techniques to support 5G communication and the IoT becomes an urgent task, which not only leads to fruitful research but also enhance the quality of our everyday life. Massive MIMO, which has shown the great potential in improving the achievable rate with a very large number of antennas, has become a popular candidate. However, the requirement of deploying a large number of antennas at the base station may not be feasible in indoor scenarios. Does there exist a good alternative that can achieve similar system performance to massive MIMO for indoor environment? In this dissertation, we address this question by proposing the time-reversal technique as a counterpart of massive MIMO in indoor scenario with the massive multipath effect. It is well known that radio signals will experience many multipaths due to the reflection from various scatters, especially in indoor environments. The traditional TR waveform is able to create a focusing effect at the intended receiver with very low transmitter complexity in a severe multipath channel. TR's focusing effect is in essence a spatial-temporal resonance effect that brings all the multipaths to arrive at a particular location at a specific moment. We show that by using time-reversal signal processing, with a sufficiently large bandwidth, one can harvest the massive multipaths naturally existing in a rich-scattering environment to form a large number of virtual antennas and achieve the desired massive multipath effect with a single antenna. Further, we explore the optimal bandwidth for TR system to achieve maximal spectral efficiency. Through evaluating the spectral efficiency, the optimal bandwidth for TR system is found determined by the system parameters, e.g., the number of users and backoff factor, instead of the waveform types. Moreover, we investigate the tradeoff between complexity and performance through establishing a generalized relationship between the system performance and waveform quantization in a practical communication system. It is shown that a 4-bit quantized waveforms can be used to achieve the similar bit-error-rate compared to the TR system with perfect precision waveforms. Besides 5G technology, Internet of Things (IoT) is another terminology that recently attracts more and more attention from both academia and industry. In the second part of this dissertation, the heterogeneity issue within the IoT is explored. One of the significant heterogeneity considering the massive amount of devices in the IoT is the device heterogeneity, i.e., the heterogeneous bandwidths and associated radio-frequency (RF) components. The traditional middleware techniques result in the fragmentation of the whole network, hampering the objects interoperability and slowing down the development of a unified reference model for the IoT. We propose a novel TR-based heterogeneous system, which can address the bandwidth heterogeneity and maintain the benefit of TR at the same time. The increase of complexity in the proposed system lies in the digital processing at the access point (AP), instead of at the devices' ends, which can be easily handled with more powerful digital signal processor (DSP). Meanwhile, the complexity of the terminal devices stays low and therefore satisfies the low-complexity and scalability requirement of the IoT. Since there is no middleware in the proposed scheme and the additional physical layer complexity concentrates on the AP side, the proposed heterogeneous TR system better satisfies the low-complexity and energy-efficiency requirement for the terminal devices (TDs) compared with the middleware approach.