2 resultados para Burroughs D-machine (Computer)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.
Resumo:
Our research was conducted to improve the timeliness, coordination, and communication during the detection, investigation and decision-making phases of the response to an aerosolized anthrax attack in the metropolitan Washington, DC, area with the goal of reducing casualties. Our research gathered information of the current response protocols through an extensive literature review and interviews with relevant officials and experts in order to identify potential problems that may exist in various steps of the detection, investigation, and response. Interviewing officials from private and government sector agencies allowed the development of a set of models of interactions and a communication network to identify discrepancies and redundancies that would elongate the delay time in initiating a public health response. In addition, we created a computer simulation designed to model an aerosol spread using weather patterns and population density to identify an estimated population of infected individuals within a target region depending on the virulence and dimensions of the weaponized spores. We developed conceptual models in order to design recommendations that would be presented to our collaborating contacts and agencies that would use such policy and analysis interventions to improve upon the overall response to an aerosolized anthrax attack, primarily through changes to emergency protocol functions and suggestions of technological detection and monitoring response to an aerosolized anthrax attack.