3 resultados para Brominated Flame Retardants

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental indicators have been proposed as a means to assess ecological integrity, monitoring both chemical and biological stressors. In this study, we used nestling bald eagles as indicators to quantify direct or indirect tertiary-level contaminant exposure. The spatial and temporal trends of polychlorinated biphenyl (PCB) congeners were evaluated in nestling plasma from 1999–2014. Two hexa-chlorinated congeners, PCB-138 and 153, were detected with the highest frequency and greatest concentrations throughout Michigan. Less-chlorinated congeners such as PCB-52 and 66 however, comprised a greater percentage of total PCB concentrations in nestlings proximate to urbanized areas, such as along the shorelines of Lake Erie. Toxic equivalents were greatest in the samples collected from nestlings located on Lake Erie, followed by the other Great Lakes spatial regions. Nestling plasma samples were also used to measure concentrations of the most heavily-used group of flame retardants, brominated diphenyl ethers (BDEs), and three groups of alternative flame retardants, non-BDE Brominated Flame Retardants (NBFRS), Dechloranes, and organophosphate esters (OPs). BDE-47, 99 and 100 contributed the greatest to total BDE concentrations. Concentrations of structurally similar NBFRs found in this study and recent atmospheric studies indicate that they are largely used as replacements to previously used BDE mixtures. A variety of Dechloranes, or derivatives of Mirex and Dechlorane Plus, were measured. Although, measured at lesser concentrations, environmental behavior of these compounds may be similar to mirex and warrant future research in aquatic species. Concentrations of OPs in nestling plasma were two to three orders of magnitude greater than all other groups of flame retardants. In addition to chemical indicators, bald eagles have also been proposed as indicators to identify ecological stressors using population measures that are tied to the fitness of individuals and populations. Using mortality as a population vitality rate, vehicle collisions were found to be the main source of mortality with a greater incidence for females during white-tailed deer (Odocoileus virginianus) hunting months and spring snow-melt. Lead poisoning was the second greatest source of mortality, with sources likely due to unretrieved hunter-killed, white-tailed deer carcasses, and possibly exacerbated by density-dependent effects due to the growing population in Michigan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the existing understanding of flame spread dynamics is enhanced through an extensive study of the heat transfer from flames spreading vertically upwards across 5 cm wide, 20 cm tall samples of extruded Poly (Methyl Methacrylate) (PMMA). These experiments have provided highly spatially resolved measurements of flame to surface heat flux and material burning rate at the critical length scale of interest, with a level of accuracy and detail unmatched by previous empirical or computational studies. Using these measurements, a wall flame model was developed that describes a flame’s heat feedback profile (both in the continuous flame region and the thermal plume above) solely as a function of material burning rate. Additional experiments were conducted to measure flame heat flux and sample mass loss rate as flames spread vertically upwards over the surface of seven other commonly used polymers, two of which are glass reinforced composite materials. Using these measurements, our wall flame model has been generalized such that it can predict heat feedback from flames supported by a wide range of materials. For the seven materials tested here – which present a varied range of burning behaviors including dripping, polymer melt flow, sample burnout, and heavy soot formation – model-predicted flame heat flux has been shown to match experimental measurements (taken across the full length of the flame) with an average accuracy of 3.9 kW m-2 (approximately 10 – 15 % of peak measured flame heat flux). This flame model has since been coupled with a powerful solid phase pyrolysis solver, ThermaKin2D, which computes the transient rate of gaseous fuel production of constituents of a pyrolyzing solid in response to an external heat flux, based on fundamental physical and chemical properties. Together, this unified model captures the two fundamental controlling mechanisms of upward flame spread – gas phase flame heat transfer and solid phase material degradation. This has enabled simulations of flame spread dynamics with a reasonable computational cost and accuracy beyond that of current models. This unified model of material degradation provides the framework to quantitatively study material burning behavior in response to a wide range of common fire scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study was conducted to elucidate the effects of acoustic perturbations on laminar diffusion line-flames and the conditions required to cause acoustically-driven extinction. Flames were produced from the fuels n-pentane, n-hexane, n-heptane, n-octane, and JP-8, using fuel-laden wicks. The wicks were housed inside of a burner whose geometry produced flames that approximated a two dimensional flame sheet. The acoustics utilized ranged in frequency between 30-50 Hz and acoustic pressures between 5-50 Pa. The unperturbed mass loss rate and flame height of the alkanes were studied, and they were found to scale in a linear manner consistent with Burke-Schumann. The mass loss rate of hexane-fueled flames experiencing acoustic perturbations was then studied. It was found that the strongest influence on the mass loss rate was the magnitude of oscillatory air movement experienced by the flame. Finally, acoustic perturbations were imposed on flames using all fuels to determine acoustic extinction criterion. Using the data collected, a model was developed which characterized the acoustic conditions required to cause flame extinction. The model was based on the ratio of an acoustic Nusselt Number to the Spalding B Number of the fuel, and it was found that at the minimum speaker power required to cause extinction this ratio was a constant. Furthermore, it was found that at conditions where the ratio was below this constant, a flame could still exist; at conditions where the ratio was greater than or equal to this constant, flame extinction always occurred.