3 resultados para Biology, Physiology
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Alcohol is one of the oldest and most widely used drugs on the planet, but the cellular mechanisms by which it affects neural function are still poorly understood. Unlike other drugs of abuse, alcohol has no specific receptor in the nervous system, but is believed to operate through GABAergic and serotonergic neurotransmitter systems. Invertebrate models offer circuits of reduced numerical complexity and involve the same cell types and neurotransmitter systems as vertebrate circuits. The well-understood neural circuits controlling crayfish escape behavior offer neurons that are modulated by GABAergic inhibition, thus making tail-flip circuitry an effective circuit model to study the cellular mechanisms of acute alcohol exposure. Crayfish are capable of two stereotyped, reflexive escape behaviors known as tail-flips that are controlled by two different pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG). The LG circuit has been an established model in the neuroscience field for more than 60 years and is almost completely mapped out. In contrast, the MG is still poorly understood, but has important behavioral implications in social behavior and value-based decision making. In this dissertation, I show that both crayfish tail-flip circuitry are physiologically sensitive to relevant alcohol concentrations and that this sensitivity is observable on the single cell level. I also show that this ethyl alcohol (EtOH) sensitivity in the LG can be changed by altering the crayfish’s recent social experience and by removing descending inputs to the LG. While the MG exhibits similar physiological sensitivity, its inhibitory properties have never been studied before this research. Through the use of electrophysiological and pharmacological techniques, I show that the MG exhibits many similar inhibitory properties as the LG that appear to be the result of GABA-mediated chloride currents. Finally, I present evidence that the EtOH-induced changes in the MG are blocked through pre-treatment of the potent GABAA receptor agonist, muscimol, which underlines the role of GABA in EtOH’s effects on crayfish tail-flip circuitry. The work presented here opens the way for crayfish tail-flip circuitry to be used as an effective model for EtOH’s acute effects on aggression and value-based decision making.
Resumo:
Calorie restriction (CR) has been established as the only non-genetic method of altering longevity and attenuating biological changes associated with aging. This nutritional paradigm has been effective in nematodes, flies, rodents, dogs and possibly non-human primates. Its long history notwithstanding, little is known regarding the exact mechanism(s) of CR action or its potential impact on the hypothalamic-pituitary-gonadal (HPG) axis. The objectives of this project were to: 1) analyze neuroendocrine changes to the HPG axis that occur with aging and 2) evaluate the effects of moderate CR on reproductive function in male rhesus macaques. Pituitary gene expression profiling, semi-quantitative RT-PCR (sqRT-PCR) and immunohistochemistry showed circadian clock mechanism components present in three age categories of macaques, demonstrated age differences in expression for Per2, indicated differential expression of Per2 and Bmal1 at opposing time points and revealed daily rhythmic expression of REV-ERBα protein. These data indicate the ability of the macaque pituitary to express core-clock genes, their protein products, and to do so in a 24-hour rhythm. Young Adult CON and CR pituitary gene expression profiles detected potential differential expression in <150 probesets. A decline in>TSHR and CGA was detected in CR macaques as measured by sqRT-PCR. Other genes investigated showed no diet-induced changes. Young Adult CON and CR testicular gene expression profiles detected potential differential expression in <300 probesets although mRNA expression was not altered based on sqRT-PCR and real-time RT-PCR. Age-related>and/or diet-induced changes in HSD17β3, INSL3, CSNK1E and CGA were observed in a separate experiment with CGA in Old Adult CR subjects returning to youthful levels. Semen samples were collected from Young Adult CON and CR macaques. Normal spermiogram measures, ZP-binding, AR assay and SCSA® were conducted and indicated no differences between CON and CR-treated animals. Both groups exhibited similar daily testosterone profiles with no differences in mean or maximum levels; however, daily minimum testosterone levels were lower in CON animals. It appears that moderate CR had limited impact on neuroendocrine or reproductive function in male rhesus macaques based on our selected endpoints. Thus, advantageous CR health benefits can be achieved without obvious negative consequences to the HPG axis.
Resumo:
Field and laboratory studies were conducted from 1998 - 2005 to examine the relationship between nutritional status and mycobacteriosis in Chesapeake Bay striped bass (Morone saxatilis). A review of DNA from archived tissue blocks indicated that the disease has been present since at least 1984. Field surveys and feeding trials were conducted from 1998-1999 to determine the nutritional condition of striped bass and the association with disease state. Proximate composition revealed elevated moisture (~ 80%) and low storage lipids (< 0.5% ww), characteristic of a poorly nourished population. These findings were not consistent with data collected in 1990-1991, or with experimentally fed fish. Mycobacteriosis explained little of the variance in chemical composition (p > 0.2); however elevated moisture and low lipid concentration were associated with fish with ulcerative lesions (p < 0.05). This suggests that age 3 and 4 striped bass were in poor nutritional health in 1998-1999, which may be independent from the disease process. Challenge studies were performed to address the hypothesis that disease progression and severity may be altered by nutritional status of the host. Intraperitoneal inoculation of 104 CFU M. marinum resulted in high mortality, elevated bacterial density, and poor granuloma formation in low ration (0.15% bw/d) groups while adequately fed fish (1% bw/d) followed a normal course of granulomatous inflammation with low mortality to a steady, equilibrium state. Further, we demonstrated that an active inflammatory state could be reactivated in fish through reductions in total diet. The energetic demand of mycobacteriosis, was insignificant in comparison to sham inoculated controls in adequately fed fish (p > 0.05). Declines in total body energy were only apparent during active, inflammatory stages of disease. Overall, these findings suggest that: 1) mycobacteriosis is not a new disease of Chesapeake Bay striped bass, 2) the disease has little energetic demand in the normal, chronic progression, and 3) poor nutritional health can greatly enhance the progression and severity, and reactivation of disease. The implications of this research are that management strategies focused on enhancing the nutritional state of striped bass could potentially alter the disease dynamics in Chesapeake Bay.