3 resultados para Bernstein polynomials
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Over a period of 50 years—between 1962 and 2012—three preeminent American piano competitions, the Van Cliburn International Piano Competition, the University of Maryland International Piano Competition/William Kapell International Piano Competition and the San Antonio International Piano Competition, commissioned for inclusion on their required performance lists 26 piano works, almost all by American composers. These compositions, works of sufficient artistic depth and technical sophistication to serve as rigorous benchmarks for competition finalists, constitute a unique segment of the contemporary American piano repertoire. Although a limited number of these pieces have found their way into the performance repertoire of concert artists, too many have not been performed since their premières in the final rounds of the competitions for which they were designed. Such should not be the case. Some of the composers in question are innovative titans of 20th-century American music—Samuel Barber, Aaron Copland, Leonard Bernstein, John Cage, John Corigliano, William Schuman, Joan Tower and Ned Rorem, to name just a few—and many of the pieces themselves, as historical touchstones, deserve careful examination. This study includes, in addition to an introductory overview of the three competitions, a survey of all 26 compositions and an analysis of their expressive characteristics, from the point of view of the performing pianist. Numerous musical examples support the analysis. Biographical information about the composers, along with descriptions of their overall musical styles, place these pieces in historical context. Analytical and technical comprehension of this distinctive and rarely performed corner of the modern classical piano world could be of inestimable value to professional pianists, piano pedagogues and music educators alike.
Resumo:
The thesis presents experimental results, simulations, and theory on turbulence excited in magnetized plasmas near the ionosphere’s upper hybrid layer. The results include: The first experimental observations of super small striations (SSS) excited by the High-Frequency Auroral Research Project (HAARP) The first detection of high-frequency (HF) waves from the HAARP transmitter over a distance of 16x10^3 km The first simulations indicating that upper hybrid (UH) turbulence excites electron Bernstein waves associated with all nearby gyroharmonics Simulation results that indicate that the resulting bulk electron heating near the upper hybrid (UH) resonance is caused primarily by electron Bernstein waves parametrically excited near the first gyroharmonic. On the experimental side we present two sets of experiments performed at the HAARP heating facility in Alaska. In the first set of experiments, we present the first detection of super-small (cm scale) striations (SSS) at the HAARP facility. We detected density structures smaller than 30 cm for the first time through a combination of satellite and ground based measurements. In the second set of experiments, we present the results of a novel diagnostic implemented by the Ukrainian Antarctic Station (UAS) in Verdansky. The technique allowed the detection of the HAARP signal at a distance of nearly 16 Mm, and established that the HAARP signal was injected into the ionospheric waveguide by direct scattering off of dekameter-scale density structures induced by the heater. On the theoretical side, we present results of Vlasov simulations near the upper hybrid layer. These results are consistent with the bulk heating required by previous work on the theory of the formation of descending artificial ionospheric layers (DIALs), and with the new observations of DIALs at HAARP’s upgraded effective radiated power (ERP). The simulations that frequency sweeps, and demonstrate that the heating changes from a bulk heating between gyroharmonics, to a tail acceleration as the pump frequency is swept through the fourth gyroharmonic. These simulations are in good agreement with experiments. We also incorporate test particle simulations that isolate the effects of specific wave modes on heating, and we find important contributions from both electron Bernstein waves and upper hybrid waves, the former of which have not yet been detected by experiments, and have not been previously explored as a driver of heating. In presenting these results, we analyzed data from HAARP diagnostics and assisted in planning the second round of experiments. We integrated the data into a picture of experiments that demonstrated the detection of SSS, hysteresis effects in simulated electromagnetic emission (SEE) features, and the direct scattering of the HF pump into the ionospheric waveguide. We performed simulations and analyzed simulation data to build the understanding of collisionless heating near the upper hybrid layer, and we used these simulations to show that bulk electron heating at the upper hybrid layer is possible, which is required by current theories of DAIL formation. We wrote a test particle simulation to isolate the effects of electron Bernstein waves and upper hybrid layers on collisionless heating, and integrated this code to work with both the output of Vlasov simulations and the input for simulations of DAIL formation.
Resumo:
The current study is a post-hoc analysis of data from the original randomized control trial of the Play and Language for Autistic Youngsters (PLAY) Home Consultation program, a parent-mediated, DIR/Floortime based early intervention program for children with ASD (Solomon, Van Egeren, Mahone, Huber, & Zimmerman, 2014). We examined 22 children from the original RCT who received the PLAY program. Children were split into two groups (high and lower functioning) based on the ADOS module administered prior to intervention. Fifteen-minute parent-child video sessions were coded through the use of CHILDES transcription software. Child and maternal language, communicative behaviors, and communicative functions were assessed in the natural language samples both pre- and post-intervention. Results demonstrated significant improvements in both child and maternal behaviors following intervention. There was a significant increase in child verbal and non-verbal initiations and verbal responses in whole group analysis. Total number of utterances, word production, and grammatical complexity all significantly improved when viewed across the whole group of participants; however, lexical growth did not reach significance. Changes in child communicative function were especially noteworthy, and demonstrated a significant increase in social interaction and a significant decrease in non-interactive behaviors. Further, mothers demonstrated an increase in responsiveness to the child’s conversational bids, increased ability to follow the child’s lead, and a decrease in directiveness. When separated for analyses within groups, trends emerged for child and maternal variables, suggesting greater gains in use of communicative function in both high and low groups over changes in linguistic structure. Additional analysis also revealed a significant inverse relationship between maternal responsiveness and child non-interactive behaviors; as mothers became more responsive, children’s non-engagement was decreased. Such changes further suggest that changes in learned skills following PLAY parent training may result in improvements in child social interaction and language abilities.