2 resultados para Belgica Mound Province, Top of Galway Mound

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compaction control using lightweight deflectometers (LWD) is currently being evaluated in several states and countries and fully implemented for pavement construction quality assurance (QA) by a few. Broader implementation has been hampered by the lack of a widely recognized standard for interpreting the load and deflection data obtained during construction QA testing. More specifically, reliable and practical procedures are required for relating these measurements to the fundamental material property—modulus—used in pavement design. This study presents a unique set of data and analyses for three different LWDs on a large-scale controlled-condition experiment. Three 4.5x4.5 m2 test pits were designed and constructed at target moisture and density conditions simulating acceptable and unacceptable construction quality. LWD testing was performed on the constructed layers along with static plate loading testing, conventional nuclear gauge moisture-density testing, and non-nuclear gravimetric and volumetric water content measurements. Additional material was collected for routine and exploratory tests in the laboratory. These included grain size distributions, soil classification, moisture-density relations, resilient modulus testing at optimum and field conditions, and an advanced experiment of LWD testing on top of the Proctor compaction mold. This unique large-scale controlled-condition experiment provides an excellent high quality resource of data that can be used by future researchers to find a rigorous, theoretically sound, and straightforward technique for standardizing LWD determination of modulus and construction QA for unbound pavement materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edge-labeled graphs have proliferated rapidly over the last decade due to the increased popularity of social networks and the Semantic Web. In social networks, relationships between people are represented by edges and each edge is labeled with a semantic annotation. Hence, a huge single graph can express many different relationships between entities. The Semantic Web represents each single fragment of knowledge as a triple (subject, predicate, object), which is conceptually identical to an edge from subject to object labeled with predicates. A set of triples constitutes an edge-labeled graph on which knowledge inference is performed. Subgraph matching has been extensively used as a query language for patterns in the context of edge-labeled graphs. For example, in social networks, users can specify a subgraph matching query to find all people that have certain neighborhood relationships. Heavily used fragments of the SPARQL query language for the Semantic Web and graph queries of other graph DBMS can also be viewed as subgraph matching over large graphs. Though subgraph matching has been extensively studied as a query paradigm in the Semantic Web and in social networks, a user can get a large number of answers in response to a query. These answers can be shown to the user in accordance with an importance ranking. In this thesis proposal, we present four different scoring models along with scalable algorithms to find the top-k answers via a suite of intelligent pruning techniques. The suggested models consist of a practically important subset of the SPARQL query language augmented with some additional useful features. The first model called Substitution Importance Query (SIQ) identifies the top-k answers whose scores are calculated from matched vertices' properties in each answer in accordance with a user-specified notion of importance. The second model called Vertex Importance Query (VIQ) identifies important vertices in accordance with a user-defined scoring method that builds on top of various subgraphs articulated by the user. Approximate Importance Query (AIQ), our third model, allows partial and inexact matchings and returns top-k of them with a user-specified approximation terms and scoring functions. In the fourth model called Probabilistic Importance Query (PIQ), a query consists of several sub-blocks: one mandatory block that must be mapped and other blocks that can be opportunistically mapped. The probability is calculated from various aspects of answers such as the number of mapped blocks, vertices' properties in each block and so on and the most top-k probable answers are returned. An important distinguishing feature of our work is that we allow the user a huge amount of freedom in specifying: (i) what pattern and approximation he considers important, (ii) how to score answers - irrespective of whether they are vertices or substitution, and (iii) how to combine and aggregate scores generated by multiple patterns and/or multiple substitutions. Because so much power is given to the user, indexing is more challenging than in situations where additional restrictions are imposed on the queries the user can ask. The proposed algorithms for the first model can also be used for answering SPARQL queries with ORDER BY and LIMIT, and the method for the second model also works for SPARQL queries with GROUP BY, ORDER BY and LIMIT. We test our algorithms on multiple real-world graph databases, showing that our algorithms are far more efficient than popular triple stores.