8 resultados para BIMETALLIC NANOSTRUCTURES

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has emerged as an extraordinary material with its capability to accommodate an array of remarkable electronic, mechanical and chemical properties. Extra-large surface-to-volume ratio renders graphene a highly flexible morphology, giving rise to intriguing observations such as ripples, wrinkles and folds as well as the potential to transform into other novel carbon nanostructures. Ultra-thin, mechanically tough, electrically conductive graphene films promise to enable a wealth of possible applications ranging from hydrogen storage scaffolds, electronic transistors, to bottom-up material designs. Enthusiasm for graphene-based applications aside, there are still significant challenges to their realization, largely due to the difficulty of precisely controlling the graphene properties. Controlling the graphene morphology over large areas is crucial in enabling future graphene-based applications and material design. This dissertation aims to shed lights on potential mechanisms to actively manipulate the graphene morphology and properties and therefore enable the material design principle that delivers desirable mechanical and electronic functionalities of graphene and its derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low dimensional nanostructures, such as nanotubes and 2D sheets, have unique and promising material properties both from a fundamental science and an application standpoint. Theoretical modelling and calculations predict previously unobserved phenomena that experimental scientists often struggle to reproduce because of the difficulty in controlling and characterizing the small structures under real-world constraints. The goal of this dissertation is to controlling these structures so that nanostructures can be characterized in-situ in transmission electron microscopes (TEM) allowing for direct observation of the actual physical responses of the materials to different stimuli. Of most interest to this work are the thermal and electrical properties of carbon nanotubes, boron nitride nanotubes, and graphene. The first topic of the dissertation is using surfactants for aqueous processing to fabricate, store, and deposit the nanostructures. More specifically, thorough characterization of a new surfactant, ammonium laurate (AL), is provided and shows that this new surfactant outperforms the standard surfactant for these materials, sodium dodecyl sulfate (SDS), in almost all tested metrics. New experimental set-ups have been developed by combining specialized in-situ TEM holders with innovative device fabrication. For example, electrical characterization of graphene was performed by using an STM-TEM holder and depositing graphene from aqueous solutions onto lithographically patterned, electron transparent silicon nitride membranes. These experiments produce exciting information about the interaction between graphene and metal probes and the substrate that it rests on. Then, by adding indium to the backside of the membrane and employing the electron thermal microscopy (EThM) technique, the same type of graphene samples could be characterized for thermal transport with high spatial resolution. It is found that reduced graphene oxide sheets deposited onto a silicon nitride membrane and displaying high levels of wrinkling have higher than expected electrical and thermal conduction properties. We are clearly able to visualize the ability of graphene to spread heat away from an electronic hot spot and into the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surge of interest in graphene, as epitomized by the Nobel Prize in Physics in 2010, is attributed to its extraordinary properties. Graphene is ultrathin, mechanically tough, and has amendable surface chemistry. These features make graphene and graphene based nanostructure an ideal candidate for the use of molecular mass manipulation. The controllable and programmable molecular mass manipulation is crucial in enabling future graphene based applications, however is challenging to achieve. This dissertation studies several aspects in molecular mass manipulation including mass transportation, patterning and storage. For molecular mass transportation, two methods based on carbon nanoscroll are demonstrated to be effective. They are torsional buckling instability assisted transportation and surface energy induced radial shrinkage. To achieve a more controllable transportation, a fundamental law of direction transport of molecular mass by straining basal graphene is studied. For molecular mass patterning, we reveal a barrier effect of line defects in graphene, which can enable molecular confining and patterning in a domain of desirable geometry. Such a strategy makes controllable patterning feasible for various types of molecules. For molecular mass storage, we propose a novel partially hydrogenated bilayer graphene structure which has large capacity for mass uptake. Also the mass release can be achieved by simply stretching the structure. Therefore the mass uptake and release is reversible. This kind of structure is crucial in enabling hydrogen fuel based technology. Lastly, spontaneous nanofluidic channel formation enabled by patterned hydrogenation is studied. This novel strategy enables programmable channel formation with pre-defined complex geometry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis demonstrates exciton engineering in semiconducting single-walled carbon nanotubes through tunable fluorescent quantum defects. By introducing different functional moieties on the sp2 lattice of carbon nanotubes, the nanotube photoluminescence is systematically tuned over 68 meV in the second near-infrared window. This new class of quantum emitters is enabled by a new chemistry that allows covalent attachment of alkyl/aryl functional groups from their iodide precursors in aqueous solution. Using aminoaryl quantum defects, we show that the pH and temperature of complex fluids can be optically measured through defect photoluminescence that encodes the local environment information. Furthermore, defect-bound trions, which are electron-hole-electron tri-carrier quasi-particles, are observed in alkylated single-walled carbon nanotubes at room temperature with surprisingly high photoluminescence brightness. Collectively, the emission from defect-bound excitons and trions in (6,5)-single walled carbon nanotubes is 18-fold brighter than that of the native exciton. These findings pave the way to chemical tailoring of the electronic and optical properties of carbon nanostructures with fluorescent quantum defects and may find applications in optoelectronics and bioimaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, are ubiquitous in nature and display many rich phenomena and novel physics. Artificial spin ices (ASIs), arrays of lithographically patterned Ising-like single-domain magnetic nanostructures, are highly tunable systems that have proven to be a novel method for studying the effects of frustration and associated properties. The strength and nature of the frustrated interactions between individual magnets are readily tuned by design and the exact microstate of the system can be determined by a variety of characterization techniques. Recently, thermal activation of ASI systems has been demonstrated, introducing the spontaneous reversal of individual magnets and allowing for new explorations of novel phase transitions and phenomena using these systems. In this work, we introduce a new, robust material with favorable magnetic properties for studying thermally active ASI and use it to investigate a variety of ASI geometries. We reproduce previously reported perfect ground-state ordering in the square geometry and present studies of the kagome lattice showing the highest yet degree of ordering observed in this fully frustrated system. We consider theoretical predictions of long-range order in ASI and use both our experimental studies and kinetic Monte Carlo simulations to evaluate these predictions. Next, we introduce controlled topological defects into our square ASI samples and observe a new, extended frustration effect of the system. When we introduce a dislocation into the lattice, we still see large domains of ground-state order, but, in every sample, a domain wall containing higher energy spin arrangements originates from the dislocation, resolving a discontinuity in the ground-state order parameter. Locally, the magnets are unfrustrated, but frustration of the lattice persists due to its topology. We demonstrate the first direct imaging of spin configurations resulting from topological frustration in any system and make predictions on how dislocations could affect properties in numerous materials systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incorporation of carbon nanostructures in metals is desirable to combine the strongly bonded electrons in the metal and the free electrons in carbon nanostructures that give rise to high ampacity and high conductivity, respectively. Carbon in copper has the potential to impact industries such as: building construction, power generation and transmission, and microelectronics. This thesis focuses on the structure and properties of bulk and thin films of a new material, Cu covetic, that contains carbon in concentrations up to 16 at.%. X-ray photoelectron spectroscopy (XPS) shows C 1s peak with both sp2 and sp3 bonded C measuring up to 3.5 wt.% (16 at.%). High resolution transmission electron microscopy and electron diffraction of bulk covetic samples show a modulated structure of ≈ 1.6 nm along several crystallographic directions in regions that have high C content suggesting that the carbon incorporates into the copper lattice forming a network. Electron energy loss spectra (EELS) from covetics reveal that the level of graphitization from the source material, activated carbon, is maintained in the covetic structure. Bulk Cu covetics have a slight increase in the lattice constant, as well as <111> texturing, or possibly a different structure, compared to pure Cu. Density functional theory calculations predict bonding between C and Cu at the edges and defects of graphene sheets. The electrical resistivity of bulk covetics first increases and then decreases with increasing C content. Cu covetic films were deposited using e-beam and pulsed laser deposition (PLD) at different temperatures. No copper oxide or any allotropes of carbon are present in the films. The e-beam films show enhanced electrical and optical properties when compared to pure Cu films of the same thickness even though no carbon was detected by XPS or EELS. They also have slightly higher ampacity than Cu metal films. EELS analysis of the C-K-edge in the PLD films indicate that graphitic carbon is transferred from the bulk into the films with uniform carbon distribution. PLD films exhibit flatter and higher transmittance curves and sheet resistance two orders of magnitude lower than e-beam films leading to a high figure of merit as transparent conductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, a remarkable 2D material, has attracted immense attention for its unique physical properties that make it ideal for a myriad of applications from electronics to biology. Fundamental to many such applications is the interaction of graphene with water, necessitating an understanding of wetting of graphene. Here, molecular dynamics simulations have been employed to understand two fundamental issues of water drop wetting on graphene: (a) the dynamics of graphene wetting and (b) wetting of graphene nanostructures. The first problem unravels that the wetting dynamics of nanodrops on graphene are exactly the same as on standard, non-2D (or non-layered) solids – this is an extremely important finding given the significant difference in the wetting statics of graphene with respect to standard solids stemming from graphene’s wetting translucency effect. This same effect, as shown in the second problem, interplays with roughness introduced by nanostructures to trigger graphene superhydrophobicity following a hitherto unknown route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.