3 resultados para Autonomous Robotic Systems. Autonomous Sailboats. Software Architecture

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tactile sensing is an important aspect of robotic systems, and enables safe, dexterous robot-environment interaction. The design and implementation of tactile sensors on robots has been a topic of research over the past 30 years, and current challenges include mechanically flexible “sensing skins”, high dynamic range (DR) sensing (i.e.: high force range and fine force resolution), multi-axis sensing, and integration between the sensors and robot. This dissertation focuses on addressing some of these challenges through a novel manufacturing process that incorporates conductive and dielectric elastomers in a reusable, multilength-scale mold, and new sensor designs for multi-axis sensing that improve force range without sacrificing resolution. A single taxel was integrated into a 1 degree of freedom robotic gripper for closed-loop slip detection. Manufacturing involved casting a composite silicone rubber, polydimethylsiloxane (PDMS) filled with conductive particles such as carbon nanotubes, into a mold to produce microscale flexible features on the order of 10s of microns. Molds were produced via microfabrication of silicon wafers, but were limited in sensing area and were costly. An improved technique was developed that produced molds of acrylic using a computer numerical controlled (CNC) milling machine. This maintained the ability to produce microscale features, and increased the sensing area while reducing costs. New sensing skins had features as small as 20 microns over an area as large as a human hand. Sensor architectures capable of sensing both shear and normal force sensing with high dynamic range were produced. Using this architecture, two sensing modalities were developed: a capacitive approach and a contact resistive approach. The capacitive approach demonstrated better dynamic range, while the contact resistive approach used simpler circuitry. Using the contact resistive approach, normal force range and resolution were 8,000 mN and 1,000 mN, respectively, and shear force range and resolution were 450 mN and 100 mN, respectively. Using the capacitive approach, normal force range and resolution were 10,000 mN and 100 mN, respectively, and shear force range and resolution were 1,500 mN and 50 mN, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft robots are robots made mostly or completely of soft, deformable, or compliant materials. As humanoid robotic technology takes on a wider range of applications, it has become apparent that they could replace humans in dangerous environments. Current attempts to create robotic hands for these environments are very difficult and costly to manufacture. Therefore, a robotic hand made with simplistic architecture and cheap fabrication techniques is needed. The goal of this thesis is to detail the design, fabrication, modeling, and testing of the SUR Hand. The SUR Hand is a soft, underactuated robotic hand designed to be cheaper and easier to manufacture than conventional hands. Yet, it maintains much of their dexterity and precision. This thesis will detail the design process for the soft pneumatic fingers, compliant palm, and flexible wrist. It will also discuss a semi-empirical model for finger design and the creation and validation of grasping models.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system