4 resultados para Assignment of credit
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.
Resumo:
In this dissertation I study the development of urban areas. At the aggregate level I investigate how they may be affected by climate change policies and by being designated the seat of governmental power. At the household level I study with coauthors how microfinance could improve the health of urban residents. In Chapter 1, I investigate how local employment may be affected by electricity price increases, which is a likely consequence of climate change policies. I outline how previous studies that find large, negative effects may be biased. To overcome these biases I develop a novel estimation strategy that blends border-pair regressions with the synthetic control methodology. I show the conditions for consistent estimation. Using this estimator, I find no effect of contemporaneous price changes on employment. Consistent with the longer time-frame for manufacturing decisions, I do find evidence for negative effects from perceived permanent price shocks. These estimates are much smaller than previous research has found. National capital cities are often substantially larger than other cities in their countries. In Chapter 2, I investigate whether there is a causal effect from being a capital by studying the 1960 relocation of the Brazilian capital from Rio de Janeiro to Brasília. Using a synthetic controls strategy I find that losing the capital had no significant effects on Rio de Janeiro in terms of population, employment, or gross domestic product (GDP). I find that Brasília experienced large and significant increases in population, employment, and GDP. I find evidence of large spillovers from the public to the private sector. Chapter 3 investigates how microfinance could increase the uptake of costly health goods. We study the effect of time payments (micro-loans or micro-savings) on willingness-to-pay (WTP) for a water filter among households in the slums of Dhaka, Bangladesh. We find that time payments significantly increase WTP: compared to a lump-sum up-front purchase, median WTP increases 83% with a six-month loan and 115% with a 12-month loan. We find that households are quite patient with respect to consumption of health inputs. We find evidence for the presence of credit and savings constraints.
Resumo:
We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.
Resumo:
This dissertation is composed of three essays covering two areas of interest. The first topic is personal transportation demand with a focus on price and fuel efficiency elasticities of mileage demand, challenging assumptions common in the rebound effect literature. The second topic is consumer finance with a focus on small loans. The first chapter creates separate variables for fuel prices during periods of increasing and decreasing prices as well as an observed fuel economy measure to empirically test the equivalence of these elasticities. Using a panel from Germany from 1997 to 2009 I find a fuel economy elasticity of mileage of 53.3%, which is significantly different from the gas price elasticity of mileage during periods of decreasing gas prices, 4.8%. I reject the null hypothesis or price symmetry, with the elasticity of mileage during period of increasing gas prices ranging from 26.2% and 28.9%. The second chapter explores the potential for the rebound effect to vary with income. Panel data from U.S. households from 1997 to 2003 is used to estimate the rebound effect in a median regression. The estimated rebound effect independent of income ranges from 17.8% to 23.6%. An interaction of income and fuel economy is negative and significant, indicating that the rebound effect may be much higher for low income individuals and decreases with income; the rebound effect for low income households ranged from 80.3% to 105.0%, indicating that such households may increase gasoline consumption given an improvement in fuel economy. The final chapter documents the costs of credit instruments found in major mail order catalogs throughout the 20th century. This study constructs a new dataset and finds that the cost of credit increased and became stickier as mail order retailers switched from an installment-style closed-end loan to a revolving-style credit card. This study argues that revolving credit's ability to decrease salience of credit costs in the price of goods is the best explanation for rate stickiness in the mail order industry as well as for the preference of revolving credit among retailers.