5 resultados para Art and Design

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the second half of the fifteenth century, King Ferrante I of Naples (r. 1458-1494) dominated the political and cultural life of the Mediterranean world. His court was home to artists, writers, musicians, and ambassadors from England to Egypt and everywhere in between. Yet, despite its historical importance, Ferrante’s court has been neglected in the scholarship. This dissertation provides a long-overdue analysis of Ferrante’s artistic patronage and attempts to explicate the king’s specific role in the process of art production at the Neapolitan court, as well as the experiences of artists employed therein. By situating Ferrante and the material culture of his court within the broader discourse of Early Modern art history for the first time, my project broadens our understanding of the function of art in Early Modern Europe. I demonstrate that, contrary to traditional assumptions, King Ferrante was a sophisticated patron of the visual arts whose political circumstances and shifting alliances were the most influential factors contributing to his artistic patronage. Unlike his father, Alfonso the Magnanimous, whose court was dominated by artists and courtiers from Spain, France, and elsewhere, Ferrante differentiated himself as a truly Neapolitan king. Yet Ferrante’s court was by no means provincial. His residence, the Castel Nuovo in Naples, became the physical embodiment of his commercial and political network, revealing the accretion of local and foreign visual vocabularies that characterizes Neapolitan visual culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Safe operation of unmanned aerial vehicles (UAVs) over populated areas requires reducing the risk posed by a UAV if it crashed during its operation. We considered several types of UAV risk-based path planning problems and developed techniques for estimating the risk to third parties on the ground. The path planning problem requires making trade-offs between risk and flight time. Four optimization approaches for solving the problem were tested; a network-based approach that used a greedy algorithm to improve the original solution generated the best solutions with the least computational effort. Additionally, an approach for solving a combined design and path planning problems was developed and tested. This approach was extended to solve robust risk-based path planning problem in which uncertainty about wind conditions would affect the risk posed by a UAV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the role of architecture as a means of reconnecting humans to the passage of time. A neglect of the temporal in our built environment obscures understanding of the human condition in all of its sensory aspects. The exploration and design of a series of ritual engagements, both culturally, and architecturally, begin to offer a venue through which designers can engage human senses. Rituals act as a means of demarcating the passage of time. It is through the engagement with these moments that people can begin to gain a richer understanding of the ephemeral nature of their own existence. The Pritzker Architecture Prize serves as the selected ritual of exploration because of its celebration of humanity and the art of architecture. However, the notion of ritual is explored down to the level of detail of engagement with handrails and door handles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientific studies exploring the environmental and experiential elements that help boost human happiness have become a significant and expanding body of work. Some urban designers, architects and planners are looking to apply this knowledge through policy decisions and design, but there is a great deal of room for further study and exploration. This paper looks at definitions of happiness and happiness measurements used in research. The paper goes on to introduce six environmental factors identified in a literature review that have design implications relating to happiness: Nature, Light, Surprise, Access, Identity, and Sociality. Architectural precedents are examined and design strategies are proposed for each factor, which are then applied to a test case site and building in Baltimore, Maryland. It is anticipated that these factors and strategies will be useful to architects, urban designers and planners as they endeavor to design positive user experiences and set city shaping policy.