2 resultados para Agricultural forest system

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overwhelming majority of flowering plant species depend on animals for pollination, and such pollinators are important for the reproductive success of many economically and environmentally important plant species. Yet pollinators in the Old World tropics are relatively understudied, particularly paleotropical nectarivorous bats (Pteropodidae), and much is unknown about their interactions with night-blooming plant species. To better understand these bat-plant pollination interactions, I conducted fieldwork in southern Thailand for a total of 20 months, spread across three years. I examined the foraging times of pteropodid bat species (Chapter 1), and found that strictly nectarivorous species foraged earlier, and for a shorter duration, than primarily frugivorous species. I also studied year-long foraging patterns of pteropodid bats to determine how different species track floral resources across seasons (Chapter 2). Larger species capable of flying long distances switched diets seasonally to forage on the most abundant floral species, while smaller species foraged throughout the year on nearby plant species that were low-rewarding but highly reliable. To determine which pteropodid species are potentially important pollinators, I quantified the frequency and effectiveness of their visits to six common bat-pollinated plant taxa for an entire year (Chapter 3). The three strictly nectarivorous species were responsible for almost all pollination, but pollinator importance of each bat species varied across plant species. I further examined the long-term reliability of these pollinators (Chapter 4), and found that pollinator importance values were consistent across the three study years. Lastly, I explored mechanisms that reduce interspecific pollen transfer among bat-pollinated plants, despite having shared pollinators. Using a flight cage experiment, I demonstrated that these plant species deposit pollen on different areas of the bat’s body (mechanical partitioning), resulting in greater pollen transfer between conspecific flowers than heterospecific flowers (Chapter 5). Additionally, while I observed ecological and phenological overlap among flowering plant species, pollinators exhibited high floral constancy within a night, resulting in strong ethological separation (Chapter 6). Collectively, these findings illustrate the importance of understudied Old World bat pollinators within a mixed agricultural-forest system, and their strong, interdependent interactions with bat-pollinated plant species within a night, across seasons, and across years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although mitigating GHG emissions is necessary to reduce the overall negative climate change impacts on crop yields and agricultural production, certain mitigation measures may generate unintended consequences to food availability and access due to land use competition and economic burden of mitigation. Prior studies have examined the co-impacts on food availability and global producer prices caused by alternative climate policies. More recent studies have looked at the reduction in total caloric intake driven by both changing income and changing food prices under one specific climate policy. However, due to inelastic calorie demand, consumers’ well-being are likely further reduced by increased food expenditures. Built upon existing literature, my dissertation explores how alternative climate policy designs might adversely affect both caloric intake and staple food budget share to 2050, by using the Global Change Assessment Model (GCAM) and a post-estimated metric of food availability and access (FAA). My dissertation first develop a set of new metrics and methods to explore new perspectives of food availability and access under new conditions. The FAA metric consists of two components, the fraction of GDP per capita spent on five categories of staple food and total caloric intake relative to a reference level. By testing the metric against alternate expectations of the future, it shows consistent results with previous studies that economic growth dominates the improvement of FAA. As we increase our ambition to achieve stringent climate targets, two policy conditions tend to have large impacts on FAA driven by competing land use and increasing food prices. Strict conservation policies leave the competition between bioenergy and agriculture production on existing commercial land, while pricing terrestrial carbon encourages large-scale afforestation. To avoid unintended outcomes to food availability and access for the poor, pricing land emissions in frontier forests has the advantage of selecting more productive land for agricultural activities compared to the full conservation approach, but the land carbon price should not be linked to the price of energy system emissions. These results are highly relevant to effective policy-making to reduce land use change emissions, such as the Reduced Emissions from Deforestation and Forest Degradation (REDD).