2 resultados para Agent-Based Model
em DRUM (Digital Repository at the University of Maryland)
Resumo:
A model to estimate the mean monthly growth of Crassostrea virginica oysters in Chesapeake Bay was developed. This model is based on the classic von Bertalanffy growth function, however the growth constant is changed every monthly timestep in response to short term changes in temperature and salinity. Using a dynamically varying growth constant allows the model to capture seasonal oscillations in growth, and growth responses to changing environmental conditions that previous applications of the von Bertalanffy model do not capture. This model is further expanded to include an estimation of Perkinsus marinus impacts on growth rates as well as estimations of ecosystem services provided by a restored oyster bar over time. The model was validated by comparing growth estimates from the model to oyster shell height observations from a variety of restoration sites in the upper Chesapeake Bay. Without using the P. marinus impact on growth, the model consistently overestimates mean oyster growth. However, when P. marinus effects are included in the model, the model estimates match the observed mean shell height closely for at least the first 3 years of growth. The estimates of ecosystem services suggested by this model imply that even with high levels of mortality on an oyster reef, the ecosystem services provided by that reef can still be maintained by growth for several years. Because larger oyster filter more water than smaller ones, larger oysters contribute more to the filtration and nutrient removal ecosystem services of the reef. Therefore a reef with an abundance of larger oysters will provide better filtration and nutrient removal. This implies that if an oyster restoration project is trying to improve water quality through oyster filtration, it is important to maintain the larger older oysters on the reef.
Resumo:
Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.