2 resultados para Aerodynamics, Supersonic.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents measurements of wall heat flux and flow structure in a canonical film cooling configuration with Mach 2.3 core flow in which the coolant is injected parallel to the wall through a two-dimensional louver. Four operating conditions are investigated: no film (i.e. flow over a rearward-facing step), subsonic film, pressure-matched film, and supersonic film. The overall objective is to provide a set of experimental data with well characterized boundary conditions that can be used for code validation. The results are compared to RANS and LES simulations which overpredict heat transfer in the subsonic film cases and underpredict heat transfer in supersonic cases after film breakdown. The thesis also describes a number of improvements that were made to the experimental facility including new Schlieren optics, a better film heater, more data at more locations, and a verification of the heat flux measurement hardware and data reduction methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. A novel multiplane shadowgraph technique is developed to resolve the structure of the shock train along both the minor and major duct axis simultaneously. It is shown that the shock train front is of a hybrid oblique/normal nature. Initial low momentum corner flow separation spawns the formation of oblique shock planes which interact and proceed toward the center flow region, becoming more normal in the process. The hybrid structure becomes more two-dimensional as aspect ratio is increased but corner flow separation precedes center flow separation on the order of 1 duct height for all aspect ratios considered. Additional instantaneous oil flow surface visualization shows the symmetry of the three-dimensional shock train front around the lower wall centerline. Quantitative synthetic schlieren visualization shows the density gradient magnitude approximately double between the corner oblique and center flow normal structures. Fast response pressure measurements acquired near the corner region of the duct show preliminary separation in the outer regions preceding centerline separation on the order of 2 seconds. Non-intrusive Focusing Schlieren Deflectometry Velocimeter measurements reveal that both shock train oscillation frequency and velocity component decrease as measurements are taken away from centerline and towards the side-wall region, along with confirming the more two dimensional shock train front approximation for higher aspect ratios. An updated modification to Waltrup \& Billig's original semi-empirical shock train length relation for circular ducts based on centerline pressure measurements is introduced to account for rectangular isolator aspect ratio, upstream corner separation length scale, and major- and minor-axis boundary layer momentum thickness asymmetry. The latter is derived both experimentally and computationally and it is shown that the major-axis (side-wall) boundary layer has lower momentum thickness compared to the minor-axis (nozzle bounded) boundary layer, making it more separable. Furthermore, it is shown that the updated correlation drastically improves shock train length prediction capabilities in higher aspect ratio isolators. This thesis suggests that performance analysis of rectangular confined supersonic flow fields can no longer be based on observations and measurements obtained along a single axis alone. Knowledge gained by the work performed in this study will allow for the development of more robust shock train leading edge detection techniques and isolator designs which can greatly mitigate the risk of inlet unstart and/or vehicle loss in flight.