3 resultados para Advanced Transaction Models
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This dissertation proposes statistical methods to formulate, estimate and apply complex transportation models. Two main problems are part of the analyses conducted and presented in this dissertation. The first method solves an econometric problem and is concerned with the joint estimation of models that contain both discrete and continuous decision variables. The use of ordered models along with a regression is proposed and their effectiveness is evaluated with respect to unordered models. Procedure to calculate and optimize the log-likelihood functions of both discrete-continuous approaches are derived, and difficulties associated with the estimation of unordered models explained. Numerical approximation methods based on the Genz algortithm are implemented in order to solve the multidimensional integral associated with the unordered modeling structure. The problems deriving from the lack of smoothness of the probit model around the maximum of the log-likelihood function, which makes the optimization and the calculation of standard deviations very difficult, are carefully analyzed. A methodology to perform out-of-sample validation in the context of a joint model is proposed. Comprehensive numerical experiments have been conducted on both simulated and real data. In particular, the discrete-continuous models are estimated and applied to vehicle ownership and use models on data extracted from the 2009 National Household Travel Survey. The second part of this work offers a comprehensive statistical analysis of free-flow speed distribution; the method is applied to data collected on a sample of roads in Italy. A linear mixed model that includes speed quantiles in its predictors is estimated. Results show that there is no road effect in the analysis of free-flow speeds, which is particularly important for model transferability. A very general framework to predict random effects with few observations and incomplete access to model covariates is formulated and applied to predict the distribution of free-flow speed quantiles. The speed distribution of most road sections is successfully predicted; jack-knife estimates are calculated and used to explain why some sections are poorly predicted. Eventually, this work contributes to the literature in transportation modeling by proposing econometric model formulations for discrete-continuous variables, more efficient methods for the calculation of multivariate normal probabilities, and random effects models for free-flow speed estimation that takes into account the survey design. All methods are rigorously validated on both real and simulated data.
Resumo:
An experimental and numerical study of turbulent fire suppression is presented. For this work, a novel and canonical facility has been developed, featuring a buoyant, turbulent, methane or propane-fueled diffusion flame suppressed via either nitrogen dilution of the oxidizer or application of a fine water mist. Flames are stabilized on a slot burner surrounded by a co-flowing oxidizer, which allows controlled delivery of either suppressant to achieve a range of conditions from complete combustion through partial and total flame quenching. A minimal supply of pure oxygen is optionally applied along the burner to provide a strengthened flame base that resists liftoff extinction and permits the study of substantially weakened turbulent flames. The carefully designed facility features well-characterized inlet and boundary conditions that are especially amenable to numerical simulation. Non-intrusive diagnostics provide detailed measurements of suppression behavior, yielding insight into the governing suppression processes, and aiding the development and validation of advanced suppression models. Diagnostics include oxidizer composition analysis to determine suppression potential, flame imaging to quantify visible flame structure, luminous and radiative emissions measurements to assess sooting propensity and heat losses, and species-based calorimetry to evaluate global heat release and combustion efficiency. The studied flames experience notable suppression effects, including transition in color from bright yellow to dim blue, expansion in flame height and structural intermittency, and reduction in radiative heat emissions. Still, measurements indicate that the combustion efficiency remains close to unity, and only near the extinction limit do the flames experience an abrupt transition from nearly complete combustion to total extinguishment. Measurements are compared with large eddy simulation results obtained using the Fire Dynamics Simulator, an open-source computational fluid dynamics software package. Comparisons of experimental and simulated results are used to evaluate the performance of available models in predicting fire suppression. Simulations in the present configuration highlight the issue of spurious reignition that is permitted by the classical eddy-dissipation concept for modeling turbulent combustion. To address this issue, simple treatments to prevent spurious reignition are developed and implemented. Simulations incorporating these treatments are shown to produce excellent agreement with the experimentally measured data, including the global combustion efficiency.
Resumo:
The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.