2 resultados para Adhesion of cells

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate objects in simple microfluidic devices using gentle fluid and electric forces under vision-based feedback control. In this dissertation, I detail a user-friendly implementation of EK tweezers that allows users to select, position, and assemble cells and nanoparticles. This EK system was used to measure attachment forces between living breast cancer cells, trap single quantum dots with 45 nm accuracy, build nanophotonic circuits, and scan optical properties of nanowires. With a novel multi-layer microfluidic device, EK was also used to guide single microspheres along complex 3D trajectories. The schemes, software, and methods developed here can be used in many settings to precisely manipulate most visible objects, assemble objects into useful structures, and improve the function of lab-on-a-chip microfluidic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to understand how cells coordinate their motion during collective migration. As previously shown, the motion of individually migrating cells is governed by wave-like cell shape dynamics. The mechanisms that regulate these dynamic behaviors in response to extracellular environment remain largely unclear. I applied shape dynamics analysis to Dictyostelium cells migrating in pairs and in multicellular streams and found that wave-like membrane protrusions are highly coupled between touching cells. I further characterized cell motion by using principle component analysis (PCA) to decompose complex cell shape changes into a serial shape change modes, from which I found that streaming cells exhibit localized anterior protrusion, termed front narrowing, to facilitate cell-cell coupling. I next explored cytoskeleton-based mechanisms of cell-cell coupling by measuring the dynamics of actin polymerization. Actin polymerization waves observed in individual cells were significantly suppressed in multicellular streams. Streaming cells exclusively produced F-actin at cell-cell contact regions, especially at cell fronts. I demonstrated that such restricted actin polymerization is associated with cell-cell coupling, as reducing actin polymerization with Latrunculin A leads to the assembly of F-actin at the side of streams, the decrease of front narrowing, and the decoupling of protrusion waves. My studies also suggest that collective migration is guided by cell-surface interactions. I examined the aggregation of Dictyostelim cells under distinct conditions and found that both chemical compositions of surfaces and surface-adhesion defects in cells result in altered collective migration patterns. I also investigated the shape dynamics of cells suspended on PEG-coated surfaces, which showed that coupling of protrusion waves disappears on touching suspended cells. These observations indicate that collective migration requires a balance between cell-cell and cell-surface adhesions. I hypothesized such a balance is reached via the regulation of cytoskeleton. Indeed, I found cells actively regulate cytoskeleton to retain optimal cell-surface adhesions on varying surfaces, and cells lacking the link between actin and surfaces (talin A) could not retain the optimal adhesions. On the other hand, suspended cells exhibited enhanced actin filament assembly on the periphery of cell groups instead of in cell-cell contact regions, which facilitates their aggregation in a clumping fashion.