2 resultados para ALZHEIMERS-DISEASE

em DRUM (Digital Repository at the University of Maryland)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the sixth leading cause of death in the US. Some researchers refer to AD as “Type III Diabetes” because of reported glucose metabolism dysfunction. Preclinical studies suggest increasing insulin decreases AD pathology, although the mechanism remains unclear. To sensitize insulin signaling, this study activated Peroxisome Proliferator-Activated Receptor Gamma using intranasal co-administration of pioglitazone (PGZ) and insulin. This method targeted the site of action to reduce peripheral effects and to maximize impact in transgenic mice expressing AD pathology. Data from GC-MS fluxomics analysis suggested that PGZ+Insulin increased glucose metabolism in the brain. Immunohistochemistry with relevant antibodies was used to identify AD pathological markers in the subiculum, indicating that PGZ+Insulin decreased pathology compared to Insulin and Saline. This suggests that increasing glucose uptake in the brain alleviated AD pathology, further clarifying the role of insulin signaling in AD pathology.Gemstone

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exercise and physical activity are lifestyle behaviors associated with enriched mental health. Understanding the mechanisms by which exercise and physical activity improve mental health may provide insight for novel therapeutic approaches for numerous mental health disorders. This dissertation reports the findings from three studies investigating the influence of acute and chronic exercise on behavioral and mechanistic markers of hippocampal plasticity and delves into the potential role of noradrenergic signaling in the hippocampal adaptations with exercise. The first study assessed the effects of long-term voluntary wheel running on hippocampal expression of plasticity-associated genes and proteins in adult male and female C57BL/6J mice, highlighting sex differences in the adaptations to long-term voluntary wheel running. The second study examined the influence of acute exercise intensity on AMPA receptor phosphorylation, a mechanism essential for hippocampal plasticity, plasticity- associated gene expression, spatial learning and memory, and anxiety-like behavior. The unexpected finding that acute exercise increased anxiety-like behavior encouraged investigation into the role of central noradrenergic signaling in acute exercise-induced anxiety. The third study determined how previous exposure to voluntary wheel running modulates the response to an acute bout of exercise, focusing primarily on transcription of the important plasticity-promoting gene, brain-derived neurotrophic factor. Using a pharmacological approach to compromise the locus coeruleus noradrenergic system, a system that is implicated in age-related mental health disorders such as Alzheimer’s Disease, the third study also investigated the influence and interaction of the noradrenergic system and acute exercise on expression of multiple brain-derived neurotrophic factor transcripts. Together, this dissertation reports the findings from a series of experiments that explored similarities, differences, and interactions between the effects of acute and chronic exercise on markers of hippocampal plasticity and behavior. Further, this work provides insight into the role of the noradrenergic system in exercise-induced hippocampal plasticity.