3 resultados para 3D Printing

em DRUM (Digital Repository at the University of Maryland)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite significant progress in the field of tissue engineering within the last decade, a number of unsolved problems still remain. One of the most relevant issues is the lack of proper vascularization that limits the size of engineered tissues to smaller than clinically relevant dimensions. In particular, the growth of engineered tissue in vitro within bioreactors is plagued with this challenge. Specifically, the tubular perfusion system bioreactor has been used for large scale bone constructs; however these engineered constructs lack inherent vasculature and quickly develop a hypoxic core, where no nutrient exchange can occur, thus leading to cell death. Through the use of 3D printed vascular templates in conjunction with a tubular perfusion system bioreactor, we attempt to create an endothelial cell monolayer on 3D scaffolds that could potentially serve as the foundation of inherent vasculature within these engineered bone grafts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ASHRAE 34, based on ASTM E681, was improved by identifying and rectifying deficiencies in ASTM E681. An ASTM E681 apparatus and procedure was developed with gaseous refrigerant testing in mind. The plumbing was improved by ensuring that the pressure readings could be constantly monitored while decreasing leakage potential. An original electrical system was designed and constructed for the ignition system. Additionally, a control panel was constructed to isolate hazardous electrical elements, and facilitate the testing, while simultaneously organizing the critical plumbing and ignition components. 3D printing efficiently produced heat-resistant, nonreactive, and structurally stable lower electrode spacers, propellers, and propeller bars. The heating system was designed to ensure even temperature throughout the apparatus. The humidity system was designed to accurately condition the air. Recommendations to improve ASTM E681 are provided. The research can be built on to improve the accuracy and reproducibility of ASTM E681.